forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfaster-rcnn_r50_fpn_fcos-rpn_1x_coco.py
48 lines (46 loc) · 1.48 KB
/
faster-rcnn_r50_fpn_fcos-rpn_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
_base_ = [
'../_base_/models/faster-rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
# copied from configs/fcos/fcos_r50-caffe_fpn_gn-head_1x_coco.py
neck=dict(
start_level=1,
add_extra_convs='on_output', # use P5
relu_before_extra_convs=True),
rpn_head=dict(
_delete_=True, # ignore the unused old settings
type='FCOSHead',
# num_classes = 1 for rpn,
# if num_classes > 1, it will be set to 1 in
# TwoStageDetector automatically
num_classes=1,
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='IoULoss', loss_weight=1.0),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
roi_head=dict( # update featmap_strides
bbox_roi_extractor=dict(featmap_strides=[8, 16, 32, 64, 128])))
# learning rate
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
end=1000), # Slowly increase lr, otherwise loss becomes NAN
dict(
type='MultiStepLR',
begin=0,
end=12,
by_epoch=True,
milestones=[8, 11],
gamma=0.1)
]