forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcornernet_hourglass104_8xb6-210e-mstest_coco.py
183 lines (171 loc) · 5.42 KB
/
cornernet_hourglass104_8xb6-210e-mstest_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
_base_ = [
'../_base_/default_runtime.py', '../_base_/datasets/coco_detection.py'
]
data_preprocessor = dict(
type='DetDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True)
# model settings
model = dict(
type='CornerNet',
data_preprocessor=data_preprocessor,
backbone=dict(
type='HourglassNet',
downsample_times=5,
num_stacks=2,
stage_channels=[256, 256, 384, 384, 384, 512],
stage_blocks=[2, 2, 2, 2, 2, 4],
norm_cfg=dict(type='BN', requires_grad=True)),
neck=None,
bbox_head=dict(
type='CornerHead',
num_classes=80,
in_channels=256,
num_feat_levels=2,
corner_emb_channels=1,
loss_heatmap=dict(
type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1),
loss_embedding=dict(
type='AssociativeEmbeddingLoss',
pull_weight=0.10,
push_weight=0.10),
loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1)),
# training and testing settings
train_cfg=None,
test_cfg=dict(
corner_topk=100,
local_maximum_kernel=3,
distance_threshold=0.5,
score_thr=0.05,
max_per_img=100,
nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian')))
# data settings
train_pipeline = [
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PhotoMetricDistortion',
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18),
dict(
# The cropped images are padded into squares during training,
# but may be smaller than crop_size.
type='RandomCenterCropPad',
crop_size=(511, 511),
ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3),
test_mode=False,
test_pad_mode=None,
mean=data_preprocessor['mean'],
std=data_preprocessor['std'],
# Image data is not converted to rgb.
to_rgb=data_preprocessor['bgr_to_rgb']),
# Make sure the output is always crop_size.
dict(type='Resize', scale=(511, 511), keep_ratio=False),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs'),
]
test_pipeline = [
dict(
type='LoadImageFromFile',
to_float32=True,
backend_args=_base_.backend_args,
),
# don't need Resize
dict(
type='RandomCenterCropPad',
crop_size=None,
ratios=None,
border=None,
test_mode=True,
test_pad_mode=['logical_or', 127],
mean=data_preprocessor['mean'],
std=data_preprocessor['std'],
# Image data is not converted to rgb.
to_rgb=data_preprocessor['bgr_to_rgb']),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'border'))
]
train_dataloader = dict(
batch_size=6,
num_workers=3,
batch_sampler=None,
dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='Adam', lr=0.0005),
clip_grad=dict(max_norm=35, norm_type=2))
max_epochs = 210
# learning rate
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0 / 3,
by_epoch=False,
begin=0,
end=500),
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[180],
gamma=0.1)
]
train_cfg = dict(
type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (6 samples per GPU)
auto_scale_lr = dict(base_batch_size=48)
tta_model = dict(
type='DetTTAModel',
tta_cfg=dict(
nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian'),
max_per_img=100))
tta_pipeline = [
dict(
type='LoadImageFromFile',
to_float32=True,
backend_args=_base_.backend_args),
dict(
type='TestTimeAug',
transforms=[
[
# ``RandomFlip`` must be placed before ``RandomCenterCropPad``,
# otherwise bounding box coordinates after flipping cannot be
# recovered correctly.
dict(type='RandomFlip', prob=1.),
dict(type='RandomFlip', prob=0.)
],
[
dict(
type='RandomCenterCropPad',
crop_size=None,
ratios=None,
border=None,
test_mode=True,
test_pad_mode=['logical_or', 127],
mean=data_preprocessor['mean'],
std=data_preprocessor['std'],
# Image data is not converted to rgb.
to_rgb=data_preprocessor['bgr_to_rgb'])
],
[dict(type='LoadAnnotations', with_bbox=True)],
[
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'flip', 'flip_direction', 'border'))
]
])
]