-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathhost_spi.cpp
813 lines (630 loc) · 18.9 KB
/
host_spi.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
#include <Arduino.h>
#include "SPI.h"
#include "tm_debug.h"
#include "host_spi.h"
#include "utility/wlan.h"
#include "utility/nvmem.h"
#include "utility/security.h"
#include "utility/hci.h"
#include "utility/os.h"
#include "utility/netapp.h"
#include "utility/evnt_handler.h"
#define READ 3
#define WRITE 1
#define HI(value) (((value) & 0xFF00) >> 8)
#define LO(value) ((value) & 0x00FF)
// #define ASSERT_CS() (P1OUT &= ~BIT3)
// #define DEASSERT_CS() (P1OUT |= BIT3)
#define HEADERS_SIZE_EVNT (SPI_HEADER_SIZE + 5)
#define SPI_HEADER_SIZE (5)
#define eSPI_STATE_POWERUP (0)
#define eSPI_STATE_INITIALIZED (1)
#define eSPI_STATE_IDLE (2)
#define eSPI_STATE_WRITE_IRQ (3)
#define eSPI_STATE_WRITE_FIRST_PORTION (4)
#define eSPI_STATE_WRITE_EOT (5)
#define eSPI_STATE_READ_IRQ (6)
#define eSPI_STATE_READ_FIRST_PORTION (7)
#define eSPI_STATE_READ_EOT (8)
#define CC3000_nIRQ (2)
#define HOST_nCS (10)
#define HOST_VBAT_SW_EN (9)
#define LED (6)
#define DISABLE (0)
#define ENABLE (1)
#define DEBUG_MODE (1)
#define NETAPP_IPCONFIG_MAC_OFFSET (20)
#define ConnLED (7)
#define ErrorLED (6)
unsigned char tSpiReadHeader[] = {READ, 0, 0, 0, 0};
int uart_have_cmd;
//foor spi bus loop
int loc = 0;
char device_name[] = "CC3000";
const char aucCC3000_prefix[] = {'T', 'T', 'T'};
// const unsigned char smartconfigkey[] = {0x73,0x6d,0x61,0x72,0x74,0x63,0x6f,0x6e,0x66,0x69,0x67,0x41,0x45,0x53,0x31,0x36};
static int keyIndex = 0;
unsigned char printOnce = 1;
volatile unsigned long ulSmartConfigFinished, ulCC3000Connected,ulCC3000DHCP, OkToDoShutDown, ulCC3000DHCP_configured;
unsigned char ucStopSmartConfig;
typedef struct
{
gcSpiHandleRx SPIRxHandler;
unsigned short usTxPacketLength;
unsigned short usRxPacketLength;
unsigned long ulSpiState;
unsigned char *pTxPacket;
unsigned char *pRxPacket;
} tSpiInformation;
sockaddr tSocketAddr;
tSpiInformation sSpiInformation;
void SpiWriteDataSynchronous(unsigned char *data, unsigned short size);
void SpiWriteAsync(const unsigned char *data, unsigned short size);
void SpiPauseSpi(void);
void SpiResumeSpi(void);
void SSIContReadOperation(void);
void SpiReadHeader(void);
// The magic number that resides at the end of the TX/RX buffer (1 byte after the allocated size)
// for the purpose of detection of the overrun. The location of the memory where the magic number
// resides shall never be written. In case it is written - the overrun occured and either recevie function
// or send function will stuck forever.
#define CC3000_BUFFER_MAGIC_NUMBER (0xDE)
///////////////////////////////////////////////////////////////////////////////////////////////////////////
//#pragma is used for determine the memory location for a specific variable. /// ///
//__no_init is used to prevent the buffer initialization in order to prevent hardware WDT expiration ///
// before entering to 'main()'. ///
//for every IDE, different syntax exists : 1. __CCS__ for CCS v5 ///
// 2. __IAR_SYSTEMS_ITM__ for IAR Embedded Workbench ///
// *CCS does not initialize variables - therefore, __no_init is not needed. ///
///////////////////////////////////////////////////////////////////////////////////////////////////////////
unsigned char wlan_tx_buffer[CC3000_TX_BUFFER_SIZE];
unsigned char spi_buffer[CC3000_RX_BUFFER_SIZE];
void csn(int mode)
{
digitalWrite(HOST_nCS,mode);
}
//*****************************************************************************
//
//! This function get the reason for the GPIO interrupt and clear cooresponding
//! interrupt flag
//!
//! \param none
//!
//! \return none
//!
//! \brief This function This function get the reason for the GPIO interrupt
//! and clear cooresponding interrupt flag
//
//*****************************************************************************
void SpiCleanGPIOISR(void)
{
TM_DEBUG("SpiCleanGPIOISR\n");
//add code
}
//*****************************************************************************
//
//! SpiClose
//!
//! \param none
//!
//! \return none
//!
//! \brief Cofigure the SSI
//
//*****************************************************************************
void
SpiClose(void)
{
TM_DEBUG("SpiClose\n");
if (sSpiInformation.pRxPacket)
{
sSpiInformation.pRxPacket = 0;
}
//
// Disable Interrupt in GPIOA module...
//
tSLInformation.WlanInterruptDisable();
}
void SpiInit(){
ulCC3000DHCP = 0;
ulCC3000Connected = 0;
ulSmartConfigFinished=0;
pinMode(CC3000_nIRQ, INPUT);
attachInterrupt(0, SPI_IRQ, FALLING); //Attaches Pin 2 to interrupt 1
pinMode(HOST_nCS, OUTPUT);
pinMode(HOST_VBAT_SW_EN, OUTPUT);
pinMode(ConnLED, OUTPUT);
pinMode(ErrorLED, OUTPUT);
//Initialize SPI
SPI.begin();
csn(HIGH);
//Set bit order to MSB first
SPI.setBitOrder(MSBFIRST);
//Set data mode to CPHA 0 and CPOL 0
SPI.setDataMode(SPI_MODE1);
//Set clock divider. This will be different for each board
//For Due, this sets to 4MHz. CC3000 can go up to 26MHz
//SPI.setClockDivider(SS, SPI_CLOCK_DIV21);
//For other boards, cant select SS pin. Only divide by 4 to get 4MHz
SPI.setClockDivider(SPI_CLOCK_DIV4);
}
//*****************************************************************************
//
//! SpiClose
//!
//! \param none
//!
//! \return none
//!
//! \brief Cofigure the SSI
//
//*****************************************************************************
void SpiOpen(gcSpiHandleRx pfRxHandler)
{
TM_DEBUG("SpiOpen\n");
sSpiInformation.ulSpiState = eSPI_STATE_POWERUP;
sSpiInformation.SPIRxHandler = pfRxHandler;
sSpiInformation.usTxPacketLength = 0;
sSpiInformation.pTxPacket = NULL;
sSpiInformation.pRxPacket = (unsigned char *)spi_buffer;
sSpiInformation.usRxPacketLength = 0;
spi_buffer[CC3000_RX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;
wlan_tx_buffer[CC3000_TX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;
// Enable interrupt on the GPIOA pin of WLAN IRQ
tSLInformation.WlanInterruptEnable();
TM_DEBUG("Completed SpiOpen\n");
}
//*****************************************************************************
//
//! This function: init_spi
//!
//! \param buffer
//!
//! \return none
//!
//! \brief initializes an SPI interface
//
//*****************************************************************************
long SpiFirstWrite(unsigned char *ucBuf, unsigned short usLength)
{
//
// workaround for first transaction
//
TM_DEBUG("SpiFirstWrite\n");
// digitalWrite(HOST_nCS, LOW);
csn(LOW);
delayMicroseconds(80);
// SPI writes first 4 bytes of data
SpiWriteDataSynchronous(ucBuf, 4);
delayMicroseconds(80);
SpiWriteDataSynchronous(ucBuf + 4, usLength - 4);
// SpiWriteDataSynchronous(testData, usLength - 4);
// From this point on - operate in a regular way
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
// digitalWrite(HOST_nCS, HIGH);
csn(HIGH);
return(0);
}
long SpiWrite(unsigned char *pUserBuffer, unsigned short usLength)
{
unsigned char ucPad = 0;
//
// Figure out the total length of the packet in order to figure out if there is padding or not
//
if(!(usLength & 0x0001))
{
ucPad++;
}
pUserBuffer[0] = WRITE;
pUserBuffer[1] = HI(usLength + ucPad);
pUserBuffer[2] = LO(usLength + ucPad);
pUserBuffer[3] = 0;
pUserBuffer[4] = 0;
usLength += (SPI_HEADER_SIZE + ucPad);
// The magic number that resides at the end of the TX/RX buffer (1 byte after the allocated size)
// for the purpose of detection of the overrun. If the magic number is overriten - buffer overrun
// occurred - and we will stuck here forever!
if (wlan_tx_buffer[CC3000_TX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER)
{
while (1)
;
}
// Serial.println("Checking for state");
// print_spi_state();
if (sSpiInformation.ulSpiState == eSPI_STATE_POWERUP)
{
while (sSpiInformation.ulSpiState != eSPI_STATE_INITIALIZED){
}
;
}
if (sSpiInformation.ulSpiState == eSPI_STATE_INITIALIZED)
{
//
// This is time for first TX/RX transactions over SPI: the IRQ is down - so need to send read buffer size command
//
SpiFirstWrite(pUserBuffer, usLength);
}
else
{
// We need to prevent here race that can occur in case 2 back to back
// packets are sent to the device, so the state will move to IDLE and once
//again to not IDLE due to IRQ
tSLInformation.WlanInterruptDisable();
while (sSpiInformation.ulSpiState != eSPI_STATE_IDLE)
{
;
}
sSpiInformation.ulSpiState = eSPI_STATE_WRITE_IRQ;
sSpiInformation.pTxPacket = pUserBuffer;
sSpiInformation.usTxPacketLength = usLength;
// assert CS
//digitalWrite(HOST_nCS, LOW);
csn(LOW);
// reenable IRQ
tSLInformation.WlanInterruptEnable();
}
// check for a missing interrupt between the CS assertion and enabling back the interrupts
if (tSLInformation.ReadWlanInterruptPin() == 0)
{
// Serial.println("writing synchronous data");
SpiWriteDataSynchronous(sSpiInformation.pTxPacket, sSpiInformation.usTxPacketLength);
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
//deassert CS
csn(HIGH);
}
//
// Due to the fact that we are currently implementing a blocking situation
// here we will wait till end of transaction
//
while (eSPI_STATE_IDLE != sSpiInformation.ulSpiState)
;
//Serial.println("done with spi write");
return(0);
}
void SpiWriteDataSynchronous(unsigned char *data, unsigned short size)
{
tSLInformation.WlanInterruptDisable();
while (size) {
SPI.transfer(*data);
size--;
data++;
}
tSLInformation.WlanInterruptEnable();
}
void SpiReadDataSynchronous(unsigned char *data, unsigned short size)
{
unsigned int i = 0;
for (i = 0; i < size; i ++)
{
data[i] = SPI.transfer(tSpiReadHeader[0]);
}
}
void SpiReadHeader(void)
{
SpiReadDataSynchronous(sSpiInformation.pRxPacket, 10);
}
long SpiReadDataCont(void)
{
long data_to_recv;
unsigned char *evnt_buff, type;
//
//determine what type of packet we have
//
evnt_buff = sSpiInformation.pRxPacket;
data_to_recv = 0;
STREAM_TO_UINT8((char *)(evnt_buff + SPI_HEADER_SIZE),
HCI_PACKET_TYPE_OFFSET, type);
switch(type)
{
case HCI_TYPE_DATA:
{
//
// We need to read the rest of data..
//
STREAM_TO_UINT16((char *)(evnt_buff + SPI_HEADER_SIZE),
HCI_DATA_LENGTH_OFFSET, data_to_recv);
if (!((HEADERS_SIZE_EVNT + data_to_recv) & 1))
{
data_to_recv++;
}
if (data_to_recv)
{
SpiReadDataSynchronous(evnt_buff + 10, data_to_recv);
}
break;
}
case HCI_TYPE_EVNT:
{
//
// Calculate the rest length of the data
//
STREAM_TO_UINT8((char *)(evnt_buff + SPI_HEADER_SIZE),
HCI_EVENT_LENGTH_OFFSET, data_to_recv);
data_to_recv -= 1;
//
// Add padding byte if needed
//
if ((HEADERS_SIZE_EVNT + data_to_recv) & 1)
{
data_to_recv++;
}
if (data_to_recv)
{
SpiReadDataSynchronous(evnt_buff + 10, data_to_recv);
}
sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;
break;
}
}
return (0);
}
void SpiPauseSpi(void)
{
detachInterrupt(0); //Detaches Pin 3 from interrupt 1
}
void SpiResumeSpi(void)
{
attachInterrupt(0, SPI_IRQ, FALLING); //Attaches Pin 2 to interrupt 1
}
void SpiTriggerRxProcessing(void)
{
// //
// // Trigger Rx processing
// //
SpiPauseSpi();
csn(HIGH);
//DEASSERT_CS();
//digitalWrite(HOST_nCS, HIGH);
// The magic number that resides at the end of the TX/RX buffer (1 byte after
// the allocated size) for the purpose of detection of the overrun. If the
// magic number is overwritten - buffer overrun occurred - and we will stuck
// here forever!
if (sSpiInformation.pRxPacket[CC3000_RX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER)
{
while (1) {
;
}
}
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
sSpiInformation.SPIRxHandler(sSpiInformation.pRxPacket + SPI_HEADER_SIZE);
}
void StartSmartConfig(void)
{
ulSmartConfigFinished = 0;
ulCC3000Connected = 0;
ulCC3000DHCP = 0;
OkToDoShutDown=0;
// Reset all the previous configuration
if (wlan_ioctl_set_connection_policy(0, 0, 0) != 0) {
digitalWrite(ErrorLED, HIGH);
return;
}
if (wlan_ioctl_del_profile(255) != 0) {
digitalWrite(ErrorLED, HIGH);
return;
}
//Wait until CC3000 is disconnected
while (ulCC3000Connected == 1)
{
delayMicroseconds(100);
}
// Serial.println("waiting for disconnect");
// Trigger the Smart Config process
// Start blinking LED6 during Smart Configuration process
digitalWrite(ConnLED, HIGH);
if (wlan_smart_config_set_prefix((char*)aucCC3000_prefix) != 0){
digitalWrite(ErrorLED, HIGH);
return;
}
digitalWrite(ConnLED, LOW);
// Start the SmartConfig start process
if (wlan_smart_config_start(0) != 0){
digitalWrite(ErrorLED, HIGH);
return;
}
if (DEBUG_MODE) {
Serial.println("smart config start");
}
digitalWrite(ConnLED, HIGH);
// Wait for Smartconfig process complete
while (ulSmartConfigFinished == 0)
{
delay(500);
digitalWrite(ConnLED, LOW);
delay(500);
digitalWrite(ConnLED, HIGH);
}
if (DEBUG_MODE) {
Serial.println("smart config finished");
}
digitalWrite(ConnLED, LOW);
// Configure to connect automatically to the AP retrieved in the
// Smart config process. Enabled fast connect.
if (wlan_ioctl_set_connection_policy(0, 0, 1) != 0){
digitalWrite(ErrorLED, HIGH);
return;
}
// reset the CC3000
wlan_stop();
delayMicroseconds(500);
wlan_start(0);
// Mask out all non-required events
wlan_set_event_mask(HCI_EVNT_WLAN_KEEPALIVE|HCI_EVNT_WLAN_UNSOL_INIT|HCI_EVNT_WLAN_ASYNC_PING_REPORT);
if (DEBUG_MODE) {
Serial.print("Config done");
}
}
//*****************************************************************************
//
//! Returns state of IRQ pin
//!
//
//*****************************************************************************
long ReadWlanInterruptPin(void)
{
return(digitalRead(CC3000_nIRQ));
}
void WlanInterruptEnable()
{
attachInterrupt(0, SPI_IRQ, FALLING); //Attaches Pin 2 to interrupt 1
}
void WlanInterruptDisable()
{
detachInterrupt(0); //Detaches Pin 3 from interrupt 1
}
void SPI_IRQ(void)
{
if (sSpiInformation.ulSpiState == eSPI_STATE_POWERUP)
{
//This means IRQ line was low call a callback of HCI Layer to inform on event
sSpiInformation.ulSpiState = eSPI_STATE_INITIALIZED;
}
else if (sSpiInformation.ulSpiState == eSPI_STATE_IDLE)
{
sSpiInformation.ulSpiState = eSPI_STATE_READ_IRQ;
//IRQ line goes down - we are start reception
csn(LOW);
//
// Wait for TX/RX Compete which will come as DMA interrupt
//
SpiReadHeader();
sSpiInformation.ulSpiState = eSPI_STATE_READ_EOT;
SSIContReadOperation();
}
else if (sSpiInformation.ulSpiState == eSPI_STATE_WRITE_IRQ)
{
SpiWriteDataSynchronous(sSpiInformation.pTxPacket,
sSpiInformation.usTxPacketLength);
sSpiInformation.ulSpiState = eSPI_STATE_IDLE;
csn(HIGH);
}
return;
}
void print_spi_state(void)
{
if (DEBUG_MODE)
{
switch (sSpiInformation.ulSpiState)
{
case eSPI_STATE_POWERUP:
TM_DEBUG("POWERUP\n");
break;
case eSPI_STATE_INITIALIZED:
TM_DEBUG("INITIALIZED\n");
break;
case eSPI_STATE_IDLE:
TM_DEBUG("IDLE\n");
break;
case eSPI_STATE_WRITE_IRQ:
TM_DEBUG("WRITE_IRQ\n");
break;
case eSPI_STATE_WRITE_FIRST_PORTION:
TM_DEBUG("WRITE_FIRST_PORTION\n");
break;
case eSPI_STATE_WRITE_EOT:
TM_DEBUG("WRITE_EOT\n");
break;
case eSPI_STATE_READ_IRQ:
TM_DEBUG("READ_IRQ\n");
break;
case eSPI_STATE_READ_FIRST_PORTION:
TM_DEBUG("READ_FIRST_PORTION\n");
break;
case eSPI_STATE_READ_EOT:
TM_DEBUG("STATE_READ_EOT\n");
break;
default:
break;
}
}
return;
}
void WriteWlanPin( unsigned char val )
{
if (val)
{
digitalWrite(HOST_VBAT_SW_EN, HIGH);
}
else
{
digitalWrite(HOST_VBAT_SW_EN, LOW);
}
}
//*****************************************************************************
//
// The function handles asynchronous events that come from CC3000 device
//!
//
//*****************************************************************************
void CC3000_UsynchCallback(long lEventType, char * data, unsigned char length)
{
if (lEventType == HCI_EVNT_WLAN_ASYNC_SIMPLE_CONFIG_DONE)
{
ulSmartConfigFinished = 1;
ucStopSmartConfig = 1;
}
if (lEventType == HCI_EVNT_WLAN_UNSOL_CONNECT)
{
ulCC3000Connected = 1;
TM_DEBUG("connected\n");
}
if (lEventType == HCI_EVNT_WLAN_UNSOL_DISCONNECT)
{
ulCC3000Connected = 0;
ulCC3000DHCP = 0;
ulCC3000DHCP_configured = 0;
printOnce = 1;
TM_DEBUG("disconnected\n");
digitalWrite(ConnLED, LOW);
// digitalWrite(ErrorLED, HIGH);
}
if (lEventType == HCI_EVNT_WLAN_UNSOL_DHCP)
{
TM_DEBUG("dhcp\n");
// Notes:
// 1) IP config parameters are received swapped
// 2) IP config parameters are valid only if status is OK, i.e. ulCC3000DHCP becomes 1
// only if status is OK, the flag is set to 1 and the addresses are valid
if ( *(data + NETAPP_IPCONFIG_MAC_OFFSET) == 0)
{
//sprintf( (char*)pucCC3000_Rx_Buffer,"IP:%d.%d.%d.%d\f\r", data[3],data[2], data[1], data[0] );
ulCC3000DHCP = 1;
TM_DEBUG("DHCP Connected with IP: %hhu.%hhu.%hhu.%hhu\n", (unsigned char) data[3], (unsigned char) data[2], (unsigned char) data[1], (unsigned char) data[0]);
digitalWrite(ConnLED, HIGH);
}
else
{
ulCC3000DHCP = 0;
TM_DEBUG("DHCP failed\n");
digitalWrite(ConnLED, LOW);
}
}
if (lEventType == HCI_EVENT_CC3000_CAN_SHUT_DOWN)
{
OkToDoShutDown = 1;
}
}
// *****************************************************************************
// ! This function enter point for write flow
// !
// ! \param SSIContReadOperation
// !
// ! \return none
// !
// ! \brief The function triggers a user provided callback for
// *****************************************************************************
void SSIContReadOperation(void)
{
//Serial.println("SSIContReadOp");
//
// The header was read - continue with the payload read
//
if (!SpiReadDataCont())
{
//
// All the data was read - finalize handling by switching to teh task
// and calling from task Event Handler
//
SpiTriggerRxProcessing();
}
}