-
Notifications
You must be signed in to change notification settings - Fork 25
/
main.py
710 lines (605 loc) · 26.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim.lr_scheduler as lr_scheduler
import random
from dataloader import create_dataloader
from time import time
from datetime import datetime
from progressbar import ProgressBar
import models
from collections import defaultdict
import os
import numpy as np
import argparse
from all_utils import (
TensorboardManager, PerfTrackTrain,
PerfTrackVal, TrackTrain, smooth_loss, DATASET_NUM_CLASS,
rscnn_voting_evaluate_cls, pn2_vote_evaluate_cls)
from configs import get_cfg_defaults
import pprint
from pointnet_pyt.pointnet.model import feature_transform_regularizer
import sys
import aug_utils
from third_party import bn_helper, tent_helper
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if DEVICE.type == 'cpu':
print('WARNING: Using CPU')
def adapt_bn(data,model,cfg):
model = bn_helper.configure_model(model,eps=1e-5, momentum=0.1,reset_stats=False,no_stats=False)
for _ in range(cfg.ITER):
model(**data)
print("Adaptation Done ...")
model.eval()
return model
def adapt_tent(data,model,cfg):
model = tent_helper.configure_model(model,eps=1e-5, momentum=0.1)
parameter,_ = tent_helper.collect_params(model)
optimizer_tent = torch.optim.SGD(parameter, lr=0.001,momentum=0.9)
for _ in range(cfg.ITER):
# index = np.random.choice(args.number,args.batch_size,replace=False)
tent_helper.forward_and_adapt(data,model,optimizer_tent)
print("Adaptation Done ...")
model.eval()
return model
def check_inp_fmt(task, data_batch, dataset_name):
if task in ['cls', 'cls_trans']:
# assert set(data_batch.keys()) == {'pc', 'label'}
# print(data_batch['pc'],data_batch['label'])
pc, label = data_batch['pc'], data_batch['label']
# special case made for modelnet40_dgcnn to match the
# original implementation
# dgcnn loads torch.DoubleTensor for the test dataset
if dataset_name == 'modelnet40_dgcnn':
assert isinstance(pc, torch.FloatTensor) or isinstance(
pc, torch.DoubleTensor)
else:
assert isinstance(pc, torch.FloatTensor)
assert isinstance(label, torch.LongTensor)
assert len(pc.shape) == 3
assert len(label.shape) == 1
b1, _, y = pc.shape[0], pc.shape[1], pc.shape[2]
b2 = label.shape[0]
assert b1 == b2
assert y == 3
assert label.max().item() < DATASET_NUM_CLASS[dataset_name]
assert label.min().item() >= 0
else:
assert NotImplemented
def check_out_fmt(task, out, dataset_name):
if task == 'cls':
assert set(out.keys()) == {'logit'}
logit = out['logit']
assert isinstance(logit, torch.FloatTensor if DEVICE.type == 'cpu' else torch.cuda.FloatTensor)
assert len(logit.shape) == 2
assert DATASET_NUM_CLASS[dataset_name] == logit.shape[1]
elif task == 'cls_trans':
assert set(out.keys()) == {'logit', 'trans_feat'}
logit = out['logit']
trans_feat = out['trans_feat']
assert isinstance(logit, torch.FloatTensor if DEVICE.type == 'cpu' else torch.cuda.FloatTensor)
assert isinstance(trans_feat, torch.FloatTensor if DEVICE.type == 'cpu' else torch.cuda.FloatTensor)
assert len(logit.shape) == 2
assert len(trans_feat.shape) == 3
assert trans_feat.shape[0] == logit.shape[0]
# 64 coming from pointnet implementation
assert (trans_feat.shape[1] == trans_feat.shape[2]) and (trans_feat.shape[1] == 64)
assert DATASET_NUM_CLASS[dataset_name] == logit.shape[1]
else:
assert NotImplemented
def get_inp(task, model, data_batch, batch_proc, dataset_name):
check_inp_fmt(task, data_batch, dataset_name)
if not batch_proc is None:
data_batch = batch_proc(data_batch, DEVICE)
check_inp_fmt(task, data_batch, dataset_name)
if isinstance(model, nn.DataParallel):
model_type = type(model.module)
else:
model_type = type(model)
if task in ['cls', 'cls_trans']:
pc = data_batch['pc']
inp = {'pc': pc}
else:
assert False
return inp
def get_loss(task, loss_name, data_batch, out, dataset_name):
"""
Returns the tensor loss function
:param task:
:param loss_name:
:param data_batch: batched data; note not applied data_batch
:param out: output from the model
:param dataset_name:
:return: tensor
"""
check_out_fmt(task, out, dataset_name)
if task == 'cls':
label = data_batch['label'].to(out['logit'].device)
if loss_name == 'cross_entropy':
if 'label_2' in data_batch.keys():
label_2 = data_batch['label_2'].to(out['logit'].device)
if isinstance(data_batch['lam'],torch.Tensor):
loss = 0
for i in range(data_batch['pc'].shape[0]):
loss_tmp = smooth_loss(out['logit'][i].unsqueeze(0), label[i].unsqueeze(0).long()) * (1 - data_batch['lam'][i]) + smooth_loss(out['logit'][i].unsqueeze(0), label_2[i].unsqueeze(0).long()) * data_batch['lam'][i]
loss += loss_tmp
loss = loss / data_batch['pc'].shape[0]
else:
loss = smooth_loss(out['logit'], label) * (1 - data_batch['lam']) + smooth_loss(out['logit'], label_2) * data_batch['lam']
else:
loss = F.cross_entropy(out['logit'], label)
# source: https://github.com/WangYueFt/dgcnn/blob/master/pytorch/util.py
elif loss_name == 'smooth':
if 'label_2' in data_batch.keys():
label_2 = data_batch['label_2'].to(out['logit'].device)
if isinstance(data_batch['lam'],torch.Tensor):
loss = 0
for i in range(data_batch['pc'].shape[0]):
loss_tmp = smooth_loss(out['logit'][i].unsqueeze(0), label[i].unsqueeze(0).long()) * (1 - data_batch['lam'][i]) + smooth_loss(out['logit'][i].unsqueeze(0), label_2[i].unsqueeze(0).long()) * data_batch['lam'][i]
loss += loss_tmp
loss = loss / data_batch['pc'].shape[0]
else:
loss = smooth_loss(out['logit'], label) * (1 - data_batch['lam']) + smooth_loss(out['logit'], label_2) * data_batch['lam']
else:
loss = smooth_loss(out['logit'], label)
else:
assert False
elif task == 'cls_trans':
label = data_batch['label'].to(out['logit'].device)
trans_feat = out['trans_feat']
logit = out['logit']
if loss_name == 'cross_entropy':
if 'label_2' in data_batch.keys():
label_2 = data_batch['label_2'].to(out['logit'].device)
if isinstance(data_batch['lam'],torch.Tensor):
loss = 0
for i in range(data_batch['pc'].shape[0]):
loss_tmp = smooth_loss(out['logit'][i].unsqueeze(0), label[i].unsqueeze(0).long()) * (1 - data_batch['lam'][i]) + smooth_loss(out['logit'][i].unsqueeze(0), label_2[i].unsqueeze(0).long()) * data_batch['lam'][i]
loss += loss_tmp
loss = loss / data_batch['pc'].shape[0]
else:
loss = smooth_loss(out['logit'], label) * (1 - data_batch['lam']) + smooth_loss(out['logit'], label_2) * data_batch['lam']
else:
loss = F.cross_entropy(out['logit'], label)
loss += feature_transform_regularizer(trans_feat) * 0.001
elif loss_name == 'smooth':
if 'label_2' in data_batch.keys():
label_2 = data_batch['label_2'].to(out['logit'].device)
if isinstance(data_batch['lam'],torch.Tensor):
loss = 0
for i in range(data_batch['pc'].shape[0]):
loss_tmp = smooth_loss(out['logit'][i].unsqueeze(0), label[i].unsqueeze(0).long()) * (1 - data_batch['lam'][i]) + smooth_loss(out['logit'][i].unsqueeze(0), label_2[i].unsqueeze(0).long()) * data_batch['lam'][i]
loss += loss_tmp
loss = loss / data_batch['pc'].shape[0]
else:
loss = smooth_loss(out['logit'], label) * (1 - data_batch['lam']) + smooth_loss(out['logit'], label_2) * data_batch['lam']
else:
loss = smooth_loss(out['logit'], label)
loss += feature_transform_regularizer(trans_feat) * 0.001
else:
assert False
else:
assert False
return loss
def validate(task, loader, model, dataset_name, adapt = None, confusion = False):
model.eval()
def get_extra_param():
return None
perf = PerfTrackVal(task, extra_param=get_extra_param())
time_dl = 0
time_gi = 0
time_model = 0
time_upd = 0
with torch.no_grad():
bar = ProgressBar(max_value=len(loader))
time5 = time()
if confusion:
pred = []
ground = []
for i, data_batch in enumerate(loader):
time1 = time()
inp = get_inp(task, model, data_batch, loader.dataset.batch_proc, dataset_name)
time2 = time()
if adapt.METHOD == 'bn':
model = adapt_bn(inp,model,adapt)
elif adapt.METHOD == 'tent':
model = adapt_tent(inp,model,adapt)
out = model(**inp)
if confusion:
pred.append(out['logit'].squeeze().cpu())
ground.append(data_batch['label'].squeeze().cpu())
time3 = time()
perf.update(data_batch=data_batch, out=out)
time4 = time()
time_dl += (time1 - time5)
time_gi += (time2 - time1)
time_model += (time3 - time2)
time_upd += (time4 - time3)
time5 = time()
bar.update(i)
print(f"Time DL: {time_dl}, Time Get Inp: {time_gi}, Time Model: {time_model}, Time Update: {time_upd}")
if not confusion:
return perf.agg()
else:
pred = np.argmax(torch.cat(pred).numpy(), axis=1)
# print(pred)
ground = torch.cat(ground).numpy()
# print(ground)
return perf.agg(), pred, ground
def train(task, loader, model, optimizer, loss_name, dataset_name, cfg):
model.train()
def get_extra_param():
return None
perf = PerfTrackTrain(task, extra_param=get_extra_param())
time_forward = 0
time_backward = 0
time_data_loading = 0
time3 = time()
for i, data_batch in enumerate(loader):
time1 = time()
if cfg.AUG.NAME == 'cutmix_r':
data_batch = aug_utils.cutmix_r(data_batch,cfg)
elif cfg.AUG.NAME == 'cutmix_k':
data_batch = aug_utils.cutmix_k(data_batch,cfg)
elif cfg.AUG.NAME == 'mixup':
data_batch = aug_utils.mixup(data_batch,cfg)
elif cfg.AUG.NAME == 'rsmix':
data_batch = aug_utils.rsmix(data_batch,cfg)
elif cfg.AUG.NAME == 'pgd':
data_batch = aug_utils.pgd(data_batch,model, task, loss_name, dataset_name)
model.train()
# print(data_batch)
inp = get_inp(task, model, data_batch, loader.dataset.batch_proc, dataset_name)
out = model(**inp)
loss = get_loss(task, loss_name, data_batch, out, dataset_name)
perf.update_all(data_batch=data_batch, out=out, loss=loss)
time2 = time()
if loss.ne(loss).any():
print("WARNING: avoiding step as nan in the loss")
else:
optimizer.zero_grad()
loss.backward()
bad_grad = False
for x in model.parameters():
if x.grad is not None:
if x.grad.ne(x.grad).any():
print("WARNING: nan in a gradient")
bad_grad = True
break
if ((x.grad == float('inf')) | (x.grad == float('-inf'))).any():
print("WARNING: inf in a gradient")
bad_grad = True
break
if bad_grad:
print("WARNING: avoiding step as bad gradient")
else:
optimizer.step()
time_data_loading += (time1 - time3)
time_forward += (time2 - time1)
time3 = time()
time_backward += (time3 - time2)
if i % 50 == 0:
print(
f"[{i}/{len(loader)}] avg_loss: {perf.agg_loss()}, FW time = {round(time_forward, 2)}, "
f"BW time = {round(time_backward, 2)}, DL time = {round(time_data_loading, 2)}")
return perf.agg(), perf.agg_loss()
def save_checkpoint(id, epoch, model, optimizer, lr_sched, bnm_sched, test_perf, cfg):
model.cpu()
path = f"./runs/{cfg.EXP.EXP_ID}/model_{id}.pth"
torch.save({
'cfg': vars(cfg),
'epoch': epoch,
'model_state': model.state_dict(),
'optimizer_state': optimizer.state_dict(),
'lr_sched_state': lr_sched.state_dict(),
'bnm_sched_state': bnm_sched.state_dict() if bnm_sched is not None else None,
'test_perf': test_perf,
}, path)
print('Checkpoint saved to %s' % path)
model.to(DEVICE)
def load_best_checkpoint(model, cfg):
path = f"./runs/{cfg.EXP.EXP_ID}/model_best.pth"
checkpoint = torch.load(path)
model.load_state_dict(checkpoint['model_state'])
print('Checkpoint loaded from %s' % path)
def load_model_opt_sched(model, optimizer, lr_sched, bnm_sched, model_path):
print(f'Recovering model and checkpoint from {model_path}')
checkpoint = torch.load(model_path)
try:
model.load_state_dict(checkpoint['model_state'])
except:
if isinstance(model, nn.DataParallel):
model.module.load_state_dict(checkpoint['model_state'])
else:
model = nn.DataParallel(model)
model.load_state_dict(checkpoint['model_state'])
model = model.module
optimizer.load_state_dict(checkpoint['optimizer_state'])
# for backward compatibility with saved models
if 'lr_sched_state' in checkpoint:
lr_sched.load_state_dict(checkpoint['lr_sched_state'])
if checkpoint['bnm_sched_state'] is not None:
bnm_sched.load_state_dict(checkpoint['bnm_sched_state'])
else:
print("WARNING: lr scheduler and bnm scheduler states are not loaded.")
return model
def get_model(cfg):
if cfg.EXP.MODEL_NAME == 'simpleview':
model = models.MVModel(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET,
**cfg.MODEL.MV)
elif cfg.EXP.MODEL_NAME == 'rscnn':
model = models.RSCNN(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET,
**cfg.MODEL.RSCNN)
elif cfg.EXP.MODEL_NAME == 'pointnet2':
model = models.PointNet2(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET,
**cfg.MODEL.PN2)
elif cfg.EXP.MODEL_NAME == 'dgcnn':
model = models.DGCNN(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET)
elif cfg.EXP.MODEL_NAME == 'pointnet':
model = models.PointNet(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET)
elif cfg.EXP.MODEL_NAME == 'pct':
model = models.Pct(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET)
elif cfg.EXP.MODEL_NAME == 'pointMLP':
model = models.pointMLP(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET)
elif cfg.EXP.MODEL_NAME == 'pointMLP2':
model = models.pointMLP2(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET)
elif cfg.EXP.MODEL_NAME == 'curvenet':
model = models.CurveNet(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET)
elif cfg.EXP.MODEL_NAME == 'gdanet':
model = models.GDANET(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET)
else:
assert False
return model
def get_metric_from_perf(task, perf, metric_name):
if task in ['cls', 'cls_trans']:
assert metric_name in ['acc']
metric = perf[metric_name]
else:
assert False
return metric
def get_optimizer(optim_name, tr_arg, model):
if optim_name == 'vanilla':
optimizer = torch.optim.Adam(
model.parameters(),
lr=tr_arg.learning_rate,
weight_decay=tr_arg.l2)
lr_sched = lr_scheduler.ReduceLROnPlateau(
optimizer,
mode='min',
factor=tr_arg.lr_decay_factor,
patience=tr_arg.lr_reduce_patience,
verbose=True,
min_lr=tr_arg.lr_clip)
bnm_sched = None
elif optim_name == 'pct':
pass
optimizer = torch.optim.Adam(
model.parameters(),
lr=tr_arg.learning_rate,
weight_decay=tr_arg.l2)
lr_sched = lr_scheduler.CosineAnnealingLR(
optimizer,
tr_arg.num_epochs,
eta_min=tr_arg.learning_rate)
bnm_sched = None
else:
assert False
return optimizer, lr_sched, bnm_sched
def entry_train(cfg, resume=False, model_path=""):
loader_train = create_dataloader(split='train', cfg=cfg)
loader_valid = create_dataloader(split='valid', cfg=cfg)
loader_test = create_dataloader(split='test', cfg=cfg)
model = get_model(cfg)
model.to(DEVICE)
print(model)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
optimizer, lr_sched, bnm_sched = get_optimizer(cfg.EXP.OPTIMIZER, cfg.TRAIN, model)
if resume:
model = load_model_opt_sched(model, optimizer, lr_sched, bnm_sched, model_path)
else:
assert model_path == ""
log_dir = f"./runs/{cfg.EXP.EXP_ID}"
if not os.path.exists(log_dir):
os.makedirs(log_dir)
tb = TensorboardManager(log_dir)
track_train = TrackTrain(early_stop_patience=cfg.TRAIN.early_stop)
for epoch in range(cfg.TRAIN.num_epochs):
print(f'Epoch {epoch}')
print('Training..')
train_perf, train_loss = train(cfg.EXP.TASK, loader_train, model, optimizer, cfg.EXP.LOSS_NAME, cfg.EXP.DATASET, cfg)
pprint.pprint(train_perf, width=80)
tb.update('train', epoch, train_perf)
if (not cfg.EXP_EXTRA.no_val) and epoch % cfg.EXP_EXTRA.val_eval_freq == 0:
print('\nValidating..')
val_perf = validate(cfg.EXP.TASK, loader_valid, model, cfg.EXP.DATASET, cfg.ADAPT)
pprint.pprint(val_perf, width=80)
tb.update('val', epoch, val_perf)
else:
val_perf = defaultdict(float)
if (not cfg.EXP_EXTRA.no_test) and (epoch % cfg.EXP_EXTRA.test_eval_freq == 0):
print('\nTesting..')
test_perf = validate(cfg.EXP.TASK, loader_test, model, cfg.EXP.DATASET, cfg.ADAPT)
pprint.pprint(test_perf, width=80)
tb.update('test', epoch, test_perf)
else:
test_perf = defaultdict(float)
track_train.record_epoch(
epoch_id=epoch,
train_metric=get_metric_from_perf(cfg.EXP.TASK, train_perf, cfg.EXP.METRIC),
val_metric=get_metric_from_perf(cfg.EXP.TASK, val_perf, cfg.EXP.METRIC),
test_metric=get_metric_from_perf(cfg.EXP.TASK, test_perf, cfg.EXP.METRIC))
if (not cfg.EXP_EXTRA.no_val) and track_train.save_model(epoch_id=epoch, split='val'):
print('Saving best model on the validation set')
save_checkpoint('best_val', epoch, model, optimizer, lr_sched, bnm_sched, test_perf, cfg)
if (not cfg.EXP_EXTRA.no_test) and track_train.save_model(epoch_id=epoch, split='test'):
print('Saving best model on the test set')
save_checkpoint('best_test', epoch, model, optimizer, lr_sched, bnm_sched, test_perf, cfg)
if (not cfg.EXP_EXTRA.no_val) and track_train.early_stop(epoch_id=epoch):
print(f"Early stopping at {epoch} as val acc did not improve for {cfg.TRAIN.early_stop} epochs.")
break
if (not (cfg.EXP_EXTRA.save_ckp == 0)) and (epoch % cfg.EXP_EXTRA.save_ckp == 0):
save_checkpoint(f'{epoch}', epoch, model, optimizer, lr_sched, bnm_sched, test_perf, cfg)
if cfg.EXP.OPTIMIZER == 'vanilla':
assert bnm_sched is None
lr_sched.step(train_loss)
else:
lr_sched.step()
print('Saving the final model')
save_checkpoint('final', epoch, model, optimizer, lr_sched, bnm_sched, test_perf, cfg)
print('\nTesting on the final model..')
last_test_perf = validate(cfg.EXP.TASK, loader_test, model, cfg.EXP.DATASET, cfg.ADAPT)
pprint.pprint(last_test_perf, width=80)
tb.close()
def entry_test(cfg, test_or_valid, model_path="", confusion = False):
split = "test" if test_or_valid else "valid"
loader_test = create_dataloader(split=split, cfg=cfg)
model = get_model(cfg)
model.to(DEVICE)
print(model)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
optimizer, lr_sched, bnm_sched = get_optimizer(cfg.EXP.OPTIMIZER, cfg.TRAIN, model)
model = load_model_opt_sched(model, optimizer, lr_sched, bnm_sched, model_path)
model.eval()
if confusion:
test_perf, pred, ground = validate(cfg.EXP.TASK, loader_test, model, cfg.EXP.DATASET, cfg.ADAPT, confusion)
print(pred.shape, ground.shape)
#### some hardcoding #######
np.save('./output/' + cfg.EXP.MODEL_NAME + '_' + cfg.DATALOADER.MODELNET40_C.corruption + '_' + str(cfg.DATALOADER.MODELNET40_C.severity) + '_pred.npy',pred )
np.save('./output/' + cfg.EXP.MODEL_NAME + '_' + cfg.DATALOADER.MODELNET40_C.corruption + '_' + str(cfg.DATALOADER.MODELNET40_C.severity) + '_ground.npy',ground)
#### #### #### #### #### ####
else:
test_perf = validate(cfg.EXP.TASK, loader_test, model, cfg.EXP.DATASET, cfg.ADAPT, confusion)
print("Model: {} Corruption: {} Severity: {} Acc: {} Class Acc: {}".format(cfg.EXP.MODEL_NAME, cfg.DATALOADER.MODELNET40_C.corruption, cfg.DATALOADER.MODELNET40_C.severity,test_perf['acc'],test_perf['class_acc']),file=file_object,flush=True)
pprint.pprint(test_perf, width=80)
return test_perf
def rscnn_vote_evaluation(cfg, model_path, log_file):
model = get_model(cfg)
checkpoint = torch.load(model_path)
try:
model.load_state_dict(checkpoint['model_state'])
except:
print("WARNING: using dataparallel to load data")
model = nn.DataParallel(model)
model.load_state_dict(checkpoint['model_state'])
print(f"Checkpoint loaded from {model_path}")
model.to(DEVICE)
model.eval()
assert cfg.EXP.DATASET in ["modelnet40_rscnn"]
loader_test = create_dataloader(split='test', cfg=cfg)
rscnn_voting_evaluate_cls(
loader=loader_test,
model=model,
data_batch_to_points_target=lambda x: (x['pc'], x['label']),
points_to_inp=lambda x: {'pc': x},
out_to_prob=lambda x: F.softmax(x['logit'], dim=1),
log_file=log_file
)
def pn2_vote_evaluation(cfg, model_path, log_file):
assert cfg.EXP.DATASET in ["modelnet40_pn2"]
loader_test = create_dataloader(split='test', cfg=cfg)
model = get_model(cfg)
checkpoint = torch.load(model_path)
try:
model.load_state_dict(checkpoint['model_state'])
except:
print("WARNING: using dataparallel to load data")
model = nn.DataParallel(model)
model.load_state_dict(checkpoint['model_state'])
print(f"Checkpoint loaded from {model_path}")
model.to(DEVICE)
model.eval()
pn2_vote_evaluate_cls(loader_test, model, log_file)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.set_defaults(entry=lambda cmd_args: parser.print_help())
parser.add_argument('--entry', type=str, default="train")
parser.add_argument('--exp-config', type=str, default="")
parser.add_argument('--model-path', type=str, default="")
parser.add_argument('--resume', action="store_true", default=False)
# parser.add_argument('--gpu',type=str,default='0',
# help="Which gpu to use")
parser.add_argument('--corruption',type=str,default='uniform',
help="Which corruption to use")
parser.add_argument('--output',type=str,default='./test.txt',
help="path to output file")
parser.add_argument('--severity',type=int,default=1,
help="Which severity to use")
parser.add_argument('--confusion', action="store_true", default=False,
help="whether to output confusion matrix data")
cmd_args = parser.parse_args()
# os.environ['CUDA_VISIBLE_DEVICES'] = cmd_args.gpu
if cmd_args.entry == "train":
assert not cmd_args.exp_config == ""
if not cmd_args.resume:
assert cmd_args.model_path == ""
cfg = get_cfg_defaults()
cfg.merge_from_file(cmd_args.exp_config)
if cfg.EXP.EXP_ID == "":
cfg.EXP.EXP_ID = str(datetime.now())[:-7].replace(' ', '-')
cfg.freeze()
print(cfg)
random.seed(cfg.EXP.SEED)
np.random.seed(cfg.EXP.SEED)
torch.manual_seed(cfg.EXP.SEED)
entry_train(cfg, cmd_args.resume, cmd_args.model_path)
elif cmd_args.entry in ["test", "valid"]:
file_object = open(cmd_args.output, 'a')
assert not cmd_args.exp_config == ""
assert not cmd_args.model_path == ""
cfg = get_cfg_defaults()
cfg.merge_from_file(cmd_args.exp_config)
if cfg.EXP.DATASET == "modelnet40_c":
cfg.DATALOADER.MODELNET40_C.corruption = cmd_args.corruption
cfg.DATALOADER.MODELNET40_C.severity = cmd_args.severity
cfg.freeze()
print(cfg)
random.seed(cfg.EXP.SEED)
np.random.seed(cfg.EXP.SEED)
torch.manual_seed(cfg.EXP.SEED)
test_or_valid = cmd_args.entry == "test"
entry_test(cfg, test_or_valid, cmd_args.model_path,cmd_args.confusion)
elif cmd_args.entry in ["rscnn_vote", "pn2_vote"]:
assert not cmd_args.exp_config == ""
assert not cmd_args.model_path == ""
log_file = f"vote_log/{cmd_args.model_path.replace('/', '_')}_{cmd_args.entry.replace('/', '_')}.log"
cfg = get_cfg_defaults()
cfg.merge_from_file(cmd_args.exp_config)
cfg.freeze()
print(cfg)
seed = cfg.EXP.SEED
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
if cmd_args.entry == "rscnn_vote":
rscnn_vote_evaluation(cfg, cmd_args.model_path, log_file)
elif cmd_args.entry == "pn2_vote":
pn2_vote_evaluation(cfg, cmd_args.model_path, log_file)
else:
assert False