forked from pliang279/LG-FedAvg
-
Notifications
You must be signed in to change notification settings - Fork 12
/
main_per_fedavg.py
138 lines (106 loc) · 5.35 KB
/
main_per_fedavg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
import copy
import pickle
import numpy as np
import pandas as pd
import torch
from utils.options import args_parser
from utils.train_utils import get_data, get_model
from models.Update import LocalUpdate, LocalUpdatePerFedAvg
from models.test import test_img, test_img_local, test_img_local_all
from models.Fed import FedAvg
import os
import pdb
if __name__ == '__main__':
# parse args
args = args_parser()
args.device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu')
if args.unbalanced:
base_dir = './save/{}/{}_iid{}_num{}_C{}_le{}/shard{}_unbalanced_bu{}_md{}/{}/'.format(
args.dataset, args.model, args.iid, args.num_users, args.frac, args.local_ep, args.shard_per_user, args.num_batch_users, args.moved_data_size, args.results_save)
else:
base_dir = './save/{}/{}_iid{}_num{}_C{}_le{}/shard{}/{}/'.format(
args.dataset, args.model, args.iid, args.num_users, args.frac, args.local_ep, args.shard_per_user, args.results_save)
algo_dir = "per_fedavg"
if not os.path.exists(os.path.join(base_dir, algo_dir)):
os.makedirs(os.path.join(base_dir, algo_dir), exist_ok=True)
dataset_train, dataset_test, dict_users_train, dict_users_test = get_data(args)
dict_save_path = os.path.join(base_dir, algo_dir, 'dict_users.pkl')
with open(dict_save_path, 'wb') as handle:
pickle.dump((dict_users_train, dict_users_test), handle)
# build a global model
net_glob = get_model(args)
net_glob.train()
# build local models
net_local_list = []
for user_idx in range(args.num_users):
net_local_list.append(copy.deepcopy(net_glob))
# training
results_save_path = os.path.join(base_dir, algo_dir, 'results.csv')
loss_train = []
net_best = None
best_loss = None
best_acc = None
best_epoch = None
lr = args.lr
results = []
w_glob = None
for iter in range(args.epochs):
loss_locals = []
m = max(int(args.frac * args.num_users), 1)
idxs_users = np.random.choice(range(args.num_users), m, replace=False)
# print("Round {}, lr: {:.6f}, {}".format(iter, lr, idxs_users))
w_locals = []
# local updates
for idx in idxs_users:
local = LocalUpdatePerFedAvg(args=args, dataset=dataset_train, idxs=dict_users_train[idx])
w, loss = local.train(net=copy.deepcopy(net_glob).to(args.device), lr=lr, beta=0.1)
w_locals.append(copy.deepcopy(w))
loss_locals.append(copy.deepcopy(loss))
# update global weights
w_glob = FedAvg(w_locals)
net_glob.load_state_dict(w_glob)
# -- Evaluation -- #
# copy weight to net_glob (broadcast)
for user_idx in range(args.num_users):
net_local_list[user_idx].load_state_dict(w_glob, strict=False)
if (iter + 1) in [args.epochs//2, (args.epochs*3)//4]:
lr *= 0.1
# print loss
loss_avg = sum(loss_locals) / len(loss_locals)
loss_train.append(loss_avg)
# SGD one step with testset
for user_idx in range(args.num_users):
local = LocalUpdatePerFedAvg(args=args, dataset=dataset_test, idxs=dict_users_test[idx])
w = local.one_sgd_step(net=copy.deepcopy(net_local_list[user_idx]).to(args.device), lr=lr, beta=0.1)
net_local_list[user_idx].load_state_dict(w)
# fine-tuning
if args.fine_tuning:
local_ep_backup = args.local_ep
args.local_ep = args.ft_ep
for user_idx in range(args.num_users):
local = LocalUpdate(args=args, dataset=dataset_train, idxs=dict_users_train[idx])
w, loss = local.train(net=copy.deepcopy(net_local_list[user_idx]).to(args.device), body_lr=lr, head_lr=lr)
net_local_list[user_idx].load_state_dict(w)
args.local_ep = local_ep_backup
if (iter + 1) % args.test_freq == 0:
acc_test, loss_test = test_img_local_all(net_local_list, args, dataset_test, dict_users_test, return_all=False)
print('Round {:3d}, Average loss {:.3f}, Test loss {:.3f}, Test accuracy: {:.2f}'.format(
iter, loss_avg, loss_test, acc_test))
if best_acc is None or acc_test > best_acc:
net_best = copy.deepcopy(net_glob)
best_acc = acc_test
best_epoch = iter
for user_idx in range(args.num_users):
best_save_path = os.path.join(base_dir, algo_dir, 'best_local_{}.pt'.format(user_idx))
torch.save(net_local_list[user_idx].state_dict(), best_save_path)
results.append(np.array([iter, loss_avg, loss_test, acc_test, best_acc]))
final_results = np.array(results)
final_results = pd.DataFrame(final_results, columns=['epoch', 'loss_avg', 'loss_test', 'acc_test', 'best_acc'])
final_results.to_csv(results_save_path, index=False)
# rollback global model
for user_idx in range(args.num_users):
net_local_list[user_idx].load_state_dict(w_glob, strict=False)
print('Best model, iter: {}, acc: {}'.format(best_epoch, best_acc))