This repository has been archived by the owner on Nov 6, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch1.py
162 lines (130 loc) · 4.69 KB
/
ch1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""
stuff
"""
from __future__ import division
from collections import Counter, defaultdict
users = [
{"id": 0, "name": "Hero"},
{"id": 1, "name": "Dunn"},
{"id": 2, "name": "Sue"},
{"id": 3, "name": "Chi"},
{"id": 4, "name": "Thor"},
{"id": 5, "name": "Clive"},
{"id": 6, "name": "Hicks"},
{"id": 7, "name": "Devin"},
{"id": 8, "name": "Kate"},
{"id": 9, "name": "Klein"}
]
friendships = [
(0, 1),
(0, 2),
(1, 2),
(1, 3),
(2, 3),
(3, 4),
(4, 5),
(5, 6),
(5, 7),
(6, 8),
(7, 8),
(8, 9)
]
interests = [
(0, "Hadoop"), (0, "Big Data"), (0, "HBase"), (0, "Java"), (0, "Spark"), (0, "Storm"),
(0, "Cassandra"), (1, "NoSQL"), (1, "MongoDB"), (1, "Cassandra"), (1, "HBase"),
(1, "Postgres"), (2, "Python"), (2, "scikit-learn"), (2, "scipy"), (2, "numpy"),
(2, "statsmodels"), (2, "pandas"), (3, "R"), (3, "Python"), (3, "statistics"),
(3, "regression"), (3, "probability"), (4, "machine learning"), (4, "regression"),
(4, "decision trees"), (4, "libsvm"), (5, "Python"), (5, "R"), (5, "Java"),
(5, "C++"), (5, "Haskel"), (5, "programming languages"), (6, "statistics"),
(6, "probability"), (6, "mathematics"), (6, "theory"), (7, "machine learning"),
(7, "scikit-learn"), (7, "Mahout"), (7, "neural networks"), (8, "neural networks"),
(8, "deep learning"), (8, "Big Data"), (8, "artificial intelligence"), (9, "Hadoop"),
(9, "Java"), (9, "MapReduce"), (9, "Big Data")
]
salaries_and_tenures = [
(83000, 8.7),
(88000, 8.1),
(48000, 0.7),
(76000, 6),
(69000, 6.5),
(76000, 7.5),
(60000, 2.5),
(83000, 10),
(48000, 1.9),
(63000, 4.2),
]
for user in users:
user["friends"] = []
for i, j in friendships:
users[i]["friends"].append(users[j])
users[j]["friends"].append(users[i])
def number_of_friends(user):
"""how many friends does _user_ have?"""
return len(user["friends"])
total_connections = sum(number_of_friends(user) for user in users)
num_users = len(users)
avg_connections = total_connections / num_users
num_friends_by_id = [(user["id"], number_of_friends(user)) for user in users]
ss = sorted(num_friends_by_id, key = lambda q: q[1], reverse = True)
def friends_of_friends_ids_bad(user):
return [foaf["id"] for friend in user["friends"] for foaf in friend["friends"]]
def not_the_same(user, other_user):
"""two users are not the same if they have different ids"""
return user["id"] != other_user["id"]
def not_friends(user, other_user):
"""
other_user is not a friend if he's not in user["friends"];
that is, if he's not_the_same as all the people in user["friends"]
"""
return all(not_the_same(friend, other_user) for friend in user["friends"])
def friends_of_friend_ids(user):
return Counter(foaf["id"]
for friend in user["friends"]
for foaf in friend["friends"]
if not_the_same(user, foaf)
and not_friends(user, foaf))
#print(friends_of_friend_ids(users[3]))
def data_scientist_who_like(target_interest):
return [user_id
for user_id, user_interest in interests
if user_interest == target_interest]
user_ids_by_interest = defaultdict(list)
for user_id, interest in interests:
user_ids_by_interest[interest].append(user_id)
interests_by_user_id = defaultdict(list)
for user_id, interest in interests:
interests_by_user_id[user_id].append(interest)
def most_common_interests_with(user):
return Counter(interested_user_id
for interest in interests_by_user_id[user["id"]]
for interested_user_id in user_ids_by_interest[interest]
if interested_user_id != user["id"])
salary_by_tenure = defaultdict(list)
for salary, tenure in salaries_and_tenures:
salary_by_tenure[tenure].append(salary)
average_salary_by_tenure = {
tenure : sum(salaries) / len(salaries)
for tenure, salaries in salary_by_tenure.items()
}
def tenure_bucket(tenure):
if tenure < 2:
return "less than two"
elif tenure < 5:
return "between two and five"
else:
return "more than five"
salary_by_tenure_bucket = defaultdict(list)
for salary, tenure in salaries_and_tenures:
bucket = tenure_bucket(tenure)
salary_by_tenure_bucket[bucket].append(salary)
average_salary_by_bucket = {
tenure_bucket : sum(salaries) / len(salaries)
for tenure_bucket, salaries in salary_by_tenure_bucket.items()
}
words_and_counts = Counter(word
for user, interest in interests
for word in interest.lower().split())
for word, count in words_and_counts.most_common():
if count > 1:
print(word, count)