-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
620 lines (519 loc) · 20.5 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
import json
import lightgbm as lgbm
import numpy as np
import torch
import torch.nn.functional as F
import wandb
from LGBMRegressor_hyperopt import optimize_lgbm
from sklearn.model_selection import GridSearchCV
from tools import MolecularDataset, get_target_list
class Trainer:
def __init__(
self, model, optimizer, scheduler=None, gradient_accumulation_splits=1
):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device " + str(self.device) + ".")
self._model = model.to(self.device)
self._optimizer = optimizer
self._scheduler = scheduler
self._gradient_accumulation_splits = gradient_accumulation_splits
@property
def model(self):
"""Getter for model."""
return self._model
def _train(self, train_loader):
"""Performs a full training step. Depending on the setting for gradient
accumulation, performs backward pass only every n batch.
Returns:
float: The obtained training loss.
"""
self._model.train()
loss_all = 0
for batch_idx, batch in enumerate(train_loader):
batch = batch.to(self.device)
loss = F.mse_loss(self._model(batch), batch.y)
loss.backward()
loss_all += loss.item() * batch.num_graphs
# gradient accumulation
if ((batch_idx + 1) % self._gradient_accumulation_splits == 0) or (
batch_idx + 1 == len(train_loader)
):
self._optimizer.step()
self._optimizer.zero_grad()
return loss_all / len(train_loader.dataset)
def _mae(self, predictions, targets):
errors = np.abs(predictions - targets)
return np.mean(errors)
def _median(self, predictions, targets):
errors = np.abs(predictions - targets)
return np.median(errors)
def _rmse(self, predictions, targets):
errors = np.abs(predictions - targets)
return np.sqrt(np.mean(np.power(errors, 2)))
def _r_squared(self, predictions, targets):
target_mean = np.mean(targets)
return 1 - (
np.sum(np.power(targets - predictions, 2))
/ np.sum(np.power(targets - target_mean, 2))
)
def predict_batch(
self, batch, target_means=0, target_stds=1, target_offset_dict=None
):
"""Makes predictions on a given batch.
Returns:
list: The predictions.
"""
self._model.eval()
batch = batch.to(self.device)
# get data point specific offsets if specified
offset = 0
if target_offset_dict is not None:
offset = np.array([target_offset_dict[i] for i in batch.id])
# get predictions for batch
predictions = (
self.model(batch).cpu().detach().numpy() * target_stds
+ target_means
+ offset
).tolist()
return predictions
def predict_loader(
self, loader, target_means=0, target_stds=1, target_offset_dict=None
):
"""Makes predictions on a given dataloader.
Returns:
list: The predictions.
"""
predictions = []
for batch in loader:
predictions.extend(
self.predict_batch(
batch,
target_means=target_means,
target_stds=target_stds,
target_offset_dict=target_offset_dict,
)
)
return predictions
def run(
self,
train_loader,
train_loader_unshuffled,
val_loader,
test_loader,
n_epochs=300,
target_means=0,
target_stds=1,
target_offset_dict=None,
):
"""Runs a full training loop with automatic metric logging through
wandb.
Args:
train_loader (Dataloader): The dataloader for the training points.
train_loader_unshuffled (Dataloader): The dataloader for the training points but unshuffled. This is used to calculate metrics on the training set.
val_loader (Dataloader): The dataloader for the validation points.
test_loader (Dataloader): The dataloader for the test points.
n_epochs (int): The number of epochs to perform.
target_means(np.array): An array of the target means from standard scaling.
target_stds(np.array): An array of the target stds from standard scaling.
target_offset_dict (dict): A dictionary that contains ID - Offset pairs that specifies offsets to be added for each individual
data point. These will be applied when getting targets and predictions.
Returns:
model: The trained model.
"""
# get targets off all sets
train_targets = get_target_list(
train_loader_unshuffled,
target_means=target_means,
target_stds=target_stds,
target_offset_dict=target_offset_dict,
)
val_targets = get_target_list(
val_loader,
target_means=target_means,
target_stds=target_stds,
target_offset_dict=target_offset_dict,
)
test_targets = get_target_list(
test_loader,
target_means=target_means,
target_stds=target_stds,
target_offset_dict=target_offset_dict,
)
best_val_error = None
for epoch in range(1, n_epochs + 1):
# get learning rate from scheduler
if self._scheduler is not None:
lr = self._scheduler.optimizer.param_groups[0]["lr"]
# training step
loss = self._train(train_loader)
# get predictions for all sets
training_preduction = np.array(
self.predict_loader(
train_loader_unshuffled,
target_means=target_means,
target_stds=target_stds,
target_offset_dict=target_offset_dict,
)
)
val_predictions = np.array(
self.predict_loader(
val_loader,
target_means=target_means,
target_stds=target_stds,
target_offset_dict=target_offset_dict,
)
)
test_predictions = np.array(
self.predict_loader(
test_loader,
target_means=target_means,
target_stds=target_stds,
target_offset_dict=target_offset_dict,
)
)
train_error = self._mae(train_targets, training_preduction)
val_error = self._mae(val_targets, val_predictions)
# learning rate scheduler step
if self._scheduler is not None:
self._scheduler.step(val_error)
# retain early stop test error
if best_val_error is None or val_error <= best_val_error:
test_error = self._mae(test_targets, test_predictions)
best_val_error = val_error
output_line = (
f"Epoch: {epoch:03d}, LR: {lr:7f}, Loss: {loss:.7f}, "
f"Train MAE: {train_error:.7f}, "
f"Val MAE: {val_error:.7f}, Test MAE: {test_error:.7f}"
)
print(output_line)
# wandb logging
wandb.log({"loss": loss}, step=epoch)
wandb.log({"train_error": train_error}, step=epoch)
wandb.log({"val_error": val_error}, step=epoch)
wandb.log({"test_error": test_error}, step=epoch)
wandb.log(
{"train_mae": self._mae(training_preduction, train_targets)}, step=epoch
)
wandb.log({"val_mae": self._mae(val_predictions, val_targets)}, step=epoch)
wandb.log(
{"test_mae": self._mae(test_predictions, test_targets)}, step=epoch
)
wandb.log(
{"train_median": self._median(training_preduction, train_targets)},
step=epoch,
)
wandb.log(
{"val_median": self._median(val_predictions, val_targets)}, step=epoch
)
wandb.log(
{"test_median": self._median(test_predictions, test_targets)},
step=epoch,
)
wandb.log(
{"train_rmse": self._rmse(training_preduction, train_targets)},
step=epoch,
)
wandb.log(
{"val_rmse": self._rmse(val_predictions, val_targets)}, step=epoch
)
wandb.log(
{"test_rmse": self._rmse(test_predictions, test_targets)}, step=epoch
)
wandb.log(
{
"train_r_squared": self._r_squared(
training_preduction, train_targets
)
},
step=epoch,
)
wandb.log(
{"val_r_squared": self._r_squared(val_predictions, val_targets)},
step=epoch,
)
wandb.log(
{"test_r_squared": self._r_squared(test_predictions, test_targets)},
step=epoch,
)
return self.model
class Trainer_fingerprint:
def __init__(self, hyper_param):
self.hyper_param = hyper_param
self.model = hyper_param["model"]["method"]
def fit(self, train_features, train_targets):
if self.hyper_param["model"]["name"] == "LightGbm":
self.fit_lightgbm(train_features, train_targets)
elif self.hyper_param["model"]["name"] == "RandomForest":
self.fit_randomforest(train_features, train_targets)
elif self.hyper_param["model"]["name"] == "NN":
self.trainer_nn = self.fit_nn(train_features, train_targets)
else:
raise NotImplementedError
def fit_lightgbm(self, train_features, train_targets):
train_dataset = lgbm.Dataset(train_features, label=train_targets)
self.model = lgbm.train(
params=self.hyper_param["model"]["parameters"],
train_set=train_dataset,
num_boost_round=10000,
)
def fit_randomforest(self, train_features, train_targets):
self.model = self.model(**self.hyper_param["model"]["parameters"])
self.model.fit(train_features, train_targets)
def fit_nn(self, train_features, train_targets):
trainer = Trainer_NN(self.hyper_param)
# Create validation and training sets.
dataset = MolecularDataset(train_features, train_targets)
# divide into subsets
train_set, valid_set = torch.utils.data.random_split(
dataset,
[
len(dataset)
- round(self.hyper_param["data"]["val_set_size"] * len(dataset)),
round(self.hyper_param["data"]["val_set_size"] * len(dataset)),
],
)
train_loader = torch.utils.data.DataLoader(
dataset=train_set,
batch_size=self.hyper_param["batch_size"],
shuffle=False,
pin_memory=True,
)
validation_loader = torch.utils.data.DataLoader(
dataset=valid_set,
batch_size=self.hyper_param["batch_size"],
shuffle=False,
pin_memory=True,
)
# run
print(train_loader)
print(validation_loader)
model = trainer.run(
train_loader,
validation_loader,
n_epochs=self.hyper_param["n_epochs"],
)
self.model = model
return trainer
class Trainer_NN:
def __init__(self, hyper_param):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device " + str(self.device) + ".")
# set up model
model = hyper_param["model"]["method"](**hyper_param["model"]["parameters"])
# set up optimizer and scheduler
optimizer = hyper_param["optimizer"]["method"](
model.parameters(), **hyper_param["optimizer"]["parameters"]
)
scheduler = hyper_param["scheduler"]["method"](
optimizer, **hyper_param["scheduler"]["parameters"]
)
self._model = model.to(self.device)
self._optimizer = optimizer
self._scheduler = scheduler
self._gradient_accumulation_splits = 1
@property
def model(self):
"""Getter for model."""
return self._model
def _train(self, train_loader):
"""Performs a full training step. Depending on the setting for gradient
accumulation, performs backward pass only every n batch.
Returns:
float: The obtained training loss.
"""
self._model.train()
loss_all = 0
for batch_idx, (features, targets) in enumerate(train_loader):
batch = features.to(self.device)
loss = F.mse_loss(self._model(batch), targets.to(self.device))
loss.backward()
loss_all += loss.item()
# gradient accumulation
if ((batch_idx + 1) % self._gradient_accumulation_splits == 0) or (
batch_idx + 1 == len(train_loader)
):
self._optimizer.step()
self._optimizer.zero_grad()
return loss_all / len(train_loader.dataset)
def _mae(self, predictions, targets):
errors = np.abs(predictions - targets)
return np.mean(errors)
def _median(self, predictions, targets):
errors = np.abs(predictions - targets)
return np.median(errors)
def _rmse(self, predictions, targets):
errors = np.abs(predictions - targets)
return np.sqrt(np.mean(np.power(errors, 2)))
def _r_squared(self, predictions, targets):
target_mean = np.mean(targets)
return 1 - (
np.sum(np.power(targets - predictions, 2))
/ np.sum(np.power(targets - target_mean, 2))
)
def predict_batch(
self, batch, target_means=0, target_stds=1, target_offset_dict=None
):
"""Makes predictions on a given batch.
Returns:
list: The predictions.
"""
self._model.eval()
batch = batch.to(self.device)
# get predictions for batch
predictions = (self.model(batch).cpu().detach().numpy()).tolist()
return predictions
def predict(self, features):
# Create validation and training sets.
dataset = MolecularDataset(features, [0] * len(features))
loader = torch.utils.data.DataLoader(
dataset=dataset,
batch_size=8,
shuffle=False,
pin_memory=True,
)
return self.predict_loader(loader)
def predict_loader(
self, loader, target_means=0, target_stds=1, target_offset_dict=None
):
"""Makes predictions on a given dataloader.
Returns:
list: The predictions.
"""
predictions = []
for features, targets in loader:
predictions.extend(
self.predict_batch(
features,
target_means=target_means,
target_stds=target_stds,
target_offset_dict=target_offset_dict,
)
)
return predictions
def run(self, train_loader, val_loader, n_epochs):
"""Runs a full training loop with automatic metric logging through
wandb.
Args:
train_loader (Dataloader): The dataloader for the training points.
val_loader (Dataloader): The dataloader for the validation points.
Returns:
model: The trained model.
"""
self.train_loader = train_loader
self.val_loader = val_loader
# get targets off all sets
train_targets = []
for features, targets in train_loader:
train_targets.extend(targets)
val_targets = []
for features, targets in val_loader:
val_targets.extend(targets)
for epoch in range(1, n_epochs + 1):
# get learning rate from scheduler
if self._scheduler is not None:
lr = self._scheduler.optimizer.param_groups[0]["lr"]
# training step
loss = self._train(train_loader)
# get predictions for all sets
training_preduction = np.array(self.predict_loader(train_loader))
val_predictions = np.array(
self.predict_loader(
val_loader,
)
)
# Calculating error
train_error = self._mae(train_targets, training_preduction)
val_error = self._mae(val_targets, val_predictions)
# learning rate scheduler step
if self._scheduler is not None:
self._scheduler.step(val_error)
output_line = (
f"Epoch: {epoch:03d}, LR: {lr:7f}, Loss: {loss:.7f}, "
f"Train MAE: {train_error:.7f}, "
f"Val MAE: {val_error:.7f}"
)
print(output_line)
# wandb logging
wandb.log({"loss": loss}, step=epoch)
wandb.log({"train_error": train_error}, step=epoch)
wandb.log({"val_error": val_error}, step=epoch)
wandb.log(
{"train_mae": self._mae(training_preduction, train_targets)}, step=epoch
)
wandb.log({"val_mae": self._mae(val_predictions, val_targets)}, step=epoch)
wandb.log(
{"train_median": self._median(training_preduction, train_targets)},
step=epoch,
)
wandb.log(
{"val_median": self._median(val_predictions, val_targets)}, step=epoch
)
wandb.log(
{"train_rmse": self._rmse(training_preduction, train_targets)},
step=epoch,
)
wandb.log(
{"val_rmse": self._rmse(val_predictions, val_targets)}, step=epoch
)
wandb.log(
{
"train_r_squared": self._r_squared(
training_preduction, train_targets
)
},
step=epoch,
)
wandb.log(
{"val_r_squared": self._r_squared(val_predictions, val_targets)},
step=epoch,
)
return self.model
class HyperParameterGuider:
def __init__(self, hyper_param):
self.hyper_param = hyper_param
print(hyper_param)
self.model = hyper_param["model"]["method"]
def optimize_hyperparameters(self, training_features, training_targets):
print(self.model)
if "LightGbm" in self.hyper_param["model"]["name"]:
self.tuned_model = self.optimize_lightgbm_parameters(
training_features, training_targets
)
self.tuned_model.save_model(
"final_best_model.txt",
num_iteration=self.tuned_model.best_iteration,
)
best_params = self.tuned_model.params
with open("lgbm_best_params.txt", "w") as f:
f.write(json.dumps(best_params))
wandb.save("final_best_model.txt")
wandb.save("lgbm_best_params.txt")
elif "RandomForest" in self.hyper_param["model"]["name"]:
model = self.optimize_randomforest_parameters(
training_features, training_targets
)
self.tuned_model = model
with open("random_forrest_best_params.txt", "w") as f:
f.write(json.dumps(self.tuned_model.best_params_))
wandb.save("random_forrest_best_params.txt")
return self.tuned_model
def optimize_randomforest_parameters(self, training_features, training_targets):
# Define the hyperparameter grid to search
param_grid = {
"n_estimators": [10, 200, 300],
"min_samples_leaf": [2, 3, 4],
}
# Perform grid search with cross-validation
grid_search = GridSearchCV(
self.model(),
param_grid,
cv=self.hyper_param["cv"],
refit=True,
verbose=4,
n_jobs=self.hyper_param["njobs"],
)
model = grid_search.fit(training_features, training_targets)
return model
def optimize_lightgbm_parameters(self, training_features, training_targets):
model = optimize_lgbm(training_features, training_targets)
return model