-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path20140415-ConcurrencyAcrossStages.tex
309 lines (274 loc) · 9.45 KB
/
20140415-ConcurrencyAcrossStages.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
% \documentclass[handout]{beamer}
\documentclass{beamer}
\mode<presentation>
{
\usetheme{ANLBlue}
% \usefonttheme[onlymath]{serif}
% \usetheme{Singapore}
% \usetheme{Warsaw}
% \usetheme{Malmoe}
% \useinnertheme{circles}
% \useoutertheme{infolines}
% \useinnertheme{rounded}
\setbeamercovered{transparent=20}
}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
\usepackage{alltt,listings,multirow,ulem,siunitx}
\usepackage[absolute,overlay]{textpos}
\TPGrid{1}{1}
\usepackage{pdfpages}
\usepackage{ulem}
\usepackage{multimedia}
\usepackage{multicol}
\newcommand\hmmax{0}
\newcommand\bmmax{0}
\usepackage{bm}
\usepackage{comment}
\usepackage{subcaption}
% font definitions, try \usepackage{ae} instead of the following
% three lines if you don't like this look
\usepackage{mathptmx}
\usepackage[scaled=.90]{helvet}
% \usepackage{courier}
\usepackage[T1]{fontenc}
\usepackage{tikz}
\usetikzlibrary{decorations.pathreplacing}
\usetikzlibrary{shadows,arrows,shapes.misc,shapes.arrows,shapes.multipart,arrows,decorations.pathmorphing,backgrounds,positioning,fit,petri,calc,shadows,chains,matrix}
\newcommand\vvec{\bm v}
\newcommand\bvec{\bm b}
\newcommand\bxk{\bvec_0 \times \kappa_0 \cdot \nabla}
\newcommand\delp{\nabla_\perp}
% \usepackage{pgfpages}
% \pgfpagesuselayout{4 on 1}[a4paper,landscape,border shrink=5mm]
\usepackage{JedMacros}
\newcommand{\timeR}{t_{\mathrm{R}}}
\newcommand{\timeW}{t_{\mathrm{W}}}
\newcommand{\mglevel}{\ensuremath{\ell}}
\newcommand{\mglevelcp}{\ensuremath{\mglevel_{\mathrm{cp}}}}
\newcommand{\mglevelcoarse}{\ensuremath{\mglevel_{\mathrm{coarse}}}}
\newcommand{\mglevelfine}{\ensuremath{\mglevel_{\mathrm{fine}}}}
%solution and residual
\newcommand{\vx}{\ensuremath{x}}
\newcommand{\vc}{\ensuremath{\hat{x}}}
\newcommand{\vr}{\ensuremath{r}}
\newcommand{\vb}{\ensuremath{b}}
%operators
\newcommand{\vA}{\ensuremath{A}}
\newcommand{\vP}{\ensuremath{I_H^h}}
\newcommand{\vS}{\ensuremath{S}}
\newcommand{\vR}{\ensuremath{I_h^H}}
\newcommand{\vI}{\ensuremath{\hat I_h^H}}
\newcommand{\vV}{\ensuremath{\mathbf{V}}}
\newcommand{\vF}{\ensuremath{F}}
\newcommand{\vtau}{\ensuremath{\mathbf{\tau}}}
\title{Concurrency across stages: Fast solvers for implicit Runge-Kutta}
\author{{\bf Jed Brown} \texttt{[email protected]} (ANL and CU Boulder) \\
Collaborators in this work: \\
\quad Debojyoti Ghosh (ANL), Mark Adams (LBL), Matt Knepley (UChicago)
}
% - Use the \inst command only if there are several affiliations.
% - Keep it simple, no one is interested in your street address.
% \institute
% {
% Mathematics and Computer Science Division \\ Argonne National Laboratory
% }
\date{2014-04-15}
% This is only inserted into the PDF information catalog. Can be left
% out.
\subject{Talks}
% If you have a file called "university-logo-filename.xxx", where xxx
% is a graphic format that can be processed by latex or pdflatex,
% resp., then you can add a logo as follows:
% \pgfdeclareimage[height=0.5cm]{university-logo}{university-logo-filename}
% \logo{\pgfuseimage{university-logo}}
% Delete this, if you do not want the table of contents to pop up at
% the beginning of each subsection:
% \AtBeginSubsection[]
% {
% \begin{frame}<beamer>
% \frametitle{Outline}
% \tableofcontents[currentsection,currentsubsection]
% \end{frame}
% }
\AtBeginSection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection]
\end{frame}
}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
% \beamerdefaultoverlayspecification{<+->}
\begin{document}
\lstset{language=C}
\normalem
\begin{frame}{MatTAIJ: ``sparse'' tensor product matrices}
\begin{gather*}
G = I_n \otimes S + J \otimes T
\end{gather*}
\begin{itemize}
\item $J$ is parallel and sparse, $S$ and $T$ are small and dense
\item More general than multiple RHS (multivectors)
\item Compare to multiple right hand sides in row-major
\item Runge-Kutta systems have $T = I_s$ (permuted from Butcher method)
\item Stream $J$ through cache once, same efficiency as multiple RHS
\item Unintrusive compared to spatial-domain vectorization or $s$-step
\end{itemize}
\end{frame}
\begin{frame}{Runge-Kutta methods}
\begin{gather*}
\dot u = F(u) \\
\underbrace{
\begin{pmatrix}
y_1 \\
\vdots \\
y_s
\end{pmatrix}}_Y =
u^{n} + h
\underbrace{
\begin{bmatrix}
a_{11} & \dotsb & a_{1s} \\
\vdots & \ddots & \vdots \\
a_{s1} & \dotsb & a_{ss}
\end{bmatrix}}_A
F
\begin{pmatrix}
y_1 \\
\vdots \\
y_s
\end{pmatrix} \\
u^{n+1} = b^T Y
\end{gather*}
\begin{itemize}
\item General framework for one-step methods
\item Diagonally implicit: $A$ lower triangular, stage order $\le 2$
\item Singly diagonally implicit: all $A_{ii}$ equal, reuse solver setup, stage order $\le 1$
\item If $A$ is a general full matrix, all stages are coupled, ``implicit RK''
\end{itemize}
\end{frame}
\begin{frame}{Implicit Runge-Kutta}
\begin{center}
\begin{tabular}{>{$}c<{$} | >{$}c<{$} >{$}c<{$} >{$}c<{$}}
\frac 1 2 - \frac{\sqrt{15}}{10} & \frac{5}{36} & \frac 2 9 - \frac{\sqrt{15}}{15} & \frac{5}{36} - \frac{\sqrt{15}}{30} \\
\frac 1 2 & \frac{5}{36} + \frac{\sqrt{15}}{24} & \frac 2 9 & \frac{5}{36} - \frac{\sqrt{15}}{24} \\
\frac 1 2 - \frac{\sqrt{15}}{10} & \frac{5}{36} + \frac{\sqrt{15}}{30} & \frac 2 9 + \frac{\sqrt{15}}{15} & \frac{5}{36} \\[4pt]
\hline
\vspace{4pt}
& \frac{5}{18} & \frac 4 9 & \frac{5}{18}
\end{tabular}
\end{center}
\begin{itemize}
\item Implicit Runge-Kutta methods have excellent accuracy and stability properties
\item Gauss methods with $s$ stages
\begin{itemize}
\item order $2s$, $(s,s)$ Pad\'e approximation to the exponential
\item $A$-stable, symplectic
\end{itemize}
\item Radau (IIA) methods with $s$ stages
\begin{itemize}
\item order $2s-1$, $A$-stable, $L$-stable
\end{itemize}
\item Lobatto (IIIC) methods with $s$ stages
\begin{itemize}
\item order $2s-2$, $A$-stable, $L$-stable, self-adjoint
\end{itemize}
\item Stage order $s$ or $s+1$
\end{itemize}
\end{frame}
\begin{frame}{Method of Butcher (1976) and Bickart (1977)}
\begin{itemize}
\item Newton linearize Runge-Kutta system
\begin{equation*}
Y = u^{n} + h A F(Y)
\end{equation*}
\item Solve linear system with tensor product operator
\begin{equation*}
S \otimes I_n + I_s \otimes J
\end{equation*}
where $S = (hA)^{-1}$ is $s\times s$ dense, $J = -\partial F(u)/\partial u$ sparse
\item SDC (2000) is Gauss-Seidel with low-order corrector
\item Butcher/Bickart method: diagonalize $S = X \Lambda X^{-1}$
\begin{itemize}
\item $\Lambda \otimes I_n + I_s \otimes J$
\item $s$ decoupled solves
\end{itemize}
\item Problem: $X$ is exponentially ill-conditioned wrt. $s$
\item We avoid diagonalization
\begin{itemize}
\item Same convergence properties
\item Stages coupled through one register transpose at spatial-point granularity
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Blue Gene/Q test}
128 nodes, 16 procs/node, small diffusion problem, CG/Jacobi solver
\begin{tabular}{lrrr}
\toprule
Method & order & nsteps & time \\
\midrule
Gauss 4 & 8 & 10 & 3.4345e-01 \\
Gauss 2 & 4 & 20 & 7.6320e-01 \\
Gauss 1 & 2 & 40 & 1.1052e+00 \\
\bottomrule
\end{tabular}
\end{frame}
\begin{frame}{Implicit Runge-Kutta for advection}
\begin{table}
\centering
\caption{Total number of iterations (communications or accesses of $J$) to solve linear advection to $t=1$ on a $1024$-point grid using point-block Jacobi preconditioning of implicit Runge-Kutta matrix.
The relative algebraic solver tolerance is $10^{-8}$.}\label{tab:irk-advection}
\begin{tabular}{lrrr}
\toprule
Family & Stages & Order & Iterations \\
\midrule
Crank-Nicolson/Gauss & 1 & 2 & 3627 \\
Gauss & 2 & 4 & 2560 \\
Gauss & 4 & 8 & 1735 \\
Gauss & 8 & 16 & 1442 \\
\bottomrule
\end{tabular}
\end{table}
\begin{itemize}
\item Naive centered-difference discretization
\end{itemize}
\end{frame}
\begin{frame}{Toward AMG for IRK/tensor-product systems}
\begin{columns}
\begin{column}{0.3\textwidth}
\includegraphics[width=\textwidth]{figures/TS/Gauss8-Eig.png}
\end{column}
\begin{column}{0.7\textwidth}
\begin{itemize}
\item Start with $\hat R = R \otimes I_s$, $\hat P = P \otimes I_s$
\begin{gather*}
G_{\text{coarse}} = \hat R (I_n \otimes S + J \otimes I_s) \hat P
\end{gather*}
\item Imaginary component slows convergence
\item Idea: incrementally rotate eigenvalues toward real axis on coarse levels \\
Enlangga and Nabben \emph{On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{We really want multigrid}
\begin{itemize}
\item Prolongation: $P \otimes I_s$
\item Coarse operator: $I_n \otimes S + (R J P) \otimes I_s$
\item Larger time steps
\item GMRES(2)/point-block Jacobi smoothing
\item FGMRES outer
\end{itemize}
\begin{tabular}{lrrrrrr}
\toprule
Method & order & nsteps & Tot.~Krylov & Krylov/stage & Krylov/step \\
\midrule
Gauss 1 & 2 & 16 & 82 & 5.1 & 5.1 \\
Gauss 2 & 4 & 8 & 64 & 4 & 8\\
Gauss 4 & 8 & 4 & 44 & 2.75 & 11 \\
Gauss 8 & 16 & 2 & 42 & 2.63 & 21 \\
\bottomrule
\end{tabular}
\end{frame}
\end{document}