forked from lucaparisi91/pimc-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcaoBernePrototype.py
252 lines (189 loc) · 6.36 KB
/
caoBernePrototype.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import scipy as sp
import numpy as np
from numpy.random import default_rng
import tqdm
from scipy import sparse
import scipy.linalg
import caoBerne as cao
"""
Prototype for sampling two particles without exchanges using the Cao Berne propagator
"""
def createJVector(M,tau,x0):
J=np.zeros(M-1)
J[0]=x0/(tau)
J[-1]=x0/(tau)
return J
def createKineticGaussianMatrix(M,tau,fixed=True):
if fixed:
A=sp.sparse.diags(
[ np.ones( M-1)*2, -np.ones(M-2),-np.ones(M-2) ],
offsets=[0,-1,1], shape=(M-1,M-1)
)
A/=tau
return A.todense()
else:
A=sp.sparse.diags(
[ np.ones( M)*2, -np.ones(M-1),-np.ones(M-1) ],
offsets=[0,-1,1], shape=(M,M)
)
A=A.todense()
A[0,-1]=-1
A[-1,0]=-1
A/=tau
return A
def sampleGaussianChain(M,timeStep, lBox,rng=default_rng()):
A = createKineticGaussianMatrix(M,timeStep,fixed=True)
Sigma=sp.linalg.inv(A )
D=len(lBox)
xs=np.zeros( (M,D) )
for d in range(D):
x0=(rng.random()-0.5)*lBox[d]
J= createJVector(M,timeStep,x0)
mu=np.dot(Sigma,J)
x=np.random.multivariate_normal(mu,Sigma)
xs[1:,d]=x
xs[0,d]=x0
return xs
def distance(deltax,lBox):
deltaxPBC=np.zeros(deltax.shape)
D=deltax.shape[1]
for d in range(D):
deltaxPBC[:,d] = deltax[:,d] - lBox[d] * np.round(deltax[:,d] * (1./lBox[d]));
return deltaxPBC
def radius(deltax):
r2=np.sum(deltax**2,axis=1)
return np.sqrt(r2)
def averageLengthSquare(x):
M=x.shape[0]
A = createKineticGaussianMatrix(M,1,fixed= False )
return np.sum(np.tensordot( A , x , axes=(1,0) )*x)
class caoBernePropagator:
def __init__(self,a):
self.a=a
self.D=1
self._G=cao.caoBernePropagator(a)
def __call__( self, x , tau ):
M,D=x.shape
y=np.zeros(x.shape)
y[0:-1,: ]=x[1:,:]
y[-1,:]=x[0,:]
rx=radius(x)
ry=radius(y)
cosTeta=np.sum(x*y,axis=1)/(rx*ry)
return 1 - (self.a*(rx+ry) - self.a**2 )/ (rx*ry) *np.exp( -( rx * ry + self.a**2 -self.a*(rx + ry))*(1+cosTeta)/(2*self.D*tau))
def timeDerivative(self,x,tau,dt=1e-3):
return (self.__call__(x,tau + dt) - self.__call__(x,tau - dt) )/(2*dt)
def logTimeDerivative(self,x,tau,dt=1e-3):
return self.timeDerivative(x,tau,dt=dt)/self.__call__(x,tau)
def force(self,x,tau,dx=1e-4):
M,D = x.shape
f=np.zeros(x.shape)
for d in range(D):
for t in range(M):
dx_=[0,0,0]
dx_[d]=dx
f[t,d]+=(self._G(x[t,:] + dx_ , x[(t+1)%M,:],tau) - self._G(x[t,:] - dx_ , x[(t+1)%M,:] , tau ) ) /(2*dx * self._G(x[t,:] , x[(t+1)%M,:] , tau ) )
f[t,d]+=(self._G(x[(t-1)%M,:] , x[t,:] + dx_, tau ) - self._G(x[(t-1)%M,:] , x[t,:] - dx_ ,tau ) )/( 2*dx *self._G( x[(t-1)%M,:] , x[t,:] , tau) )
return -f
def energy( prop, x1, x2 , tau, lBox):
M,_=x1.shape
T1=averageLengthSquare(x1)/(2*tau)
T2=averageLengthSquare(x2)/(2*tau)
T=T1 + T2
deltax=distance(x2-x1,lBox)
V = - np.sum(prop.logTimeDerivative(deltax,tau,dt=1e-6) )/M
beta=M*tau
T/=beta
return -T + V + 3./(2*tau)*2
def virialEnergy(G,x1,x2,tau,lBox):
M,D=x1.shape
beta=M*tau
deltax=distance(x2-x1,lBox)
force=G.force(deltax,tau,dx=1e-6)
V = - np.sum( G.logTimeDerivative(deltax,tau,dt=1e-6) )/M
Rc1=np.mean(x1,axis=0)
Rc2=np.mean(x2,axis=0)
e3 = - np.sum( (x1 - Rc1) * force )
e3 += np.sum( (x2 - Rc2) * force)
e3/=(2*beta)
return D/(2*beta)*2 + e3 + V
def sampleInitialCondition(a,M,timeStep,lBox,maxIteration=1000):
i=0
while True:
x1=sampleGaussianChain(M=M,timeStep=timeStep,lBox=lBox)
x2=sampleGaussianChain(M=M,timeStep=timeStep,lBox=lBox)
deltaxPBC=distance(x2-x1,lBox)
aMin=np.min(radius(deltaxPBC))
if aMin > a:
break
i+=1
if i> maxIteration:
raise RuntimeError("Max iteration reached")
return x1,x2
def metropolis_log(p,rng=default_rng()):
accept=False
if p >= 0:
accept=True
else:
r=rng.random()
if p> np.log(r):
accept=True
else:
accept=False
return accept
if __name__ == "__main__":
M=10
timeStep=0.1
a=0.1
lBox=[1,1,1]
nSteps=100000
subSteps=100
G=caoBernePropagator(a)
x1,x2=sampleInitialCondition(a,M,timeStep,lBox)
deltaxPBC=distance(x2-x1,lBox)
rng=default_rng()
accept=True
p=np.sum(np.log(G(deltaxPBC,timeStep) ))
for i in range(nSteps):
acceptanceRatio=0
l2_acc=0
dis2_acc=0
e_acc=0
eV_acc=0
for ii in range(subSteps) :
x1New=sampleGaussianChain(M=M,timeStep=timeStep,lBox=lBox,rng=rng)
x2New=sampleGaussianChain(M=M,timeStep=timeStep,lBox=lBox,rng=rng)
deltaxPBC=distance(x2New-x1New,lBox)
aMin=np.min(radius(deltaxPBC))
p2=p
if aMin > a:
p2=np.sum(np.log(G(deltaxPBC,timeStep) ))
accept=metropolis_log(p2 - p ,rng=rng)
else:
accept=False
if accept:
acceptanceRatio+=1
x1=x1New
x2=x2New
p=p2
# make measurements
l2_acc+=averageLengthSquare(x1)
dis2_acc+= np.sum( distance(x2-x1,lBox)**2 )/(M*2)
e_acc+=energy( G, x1, x2 , timeStep, lBox)
eV_acc+=virialEnergy( G, x1, x2 , timeStep, lBox)
print("------")
print ("{}/{}".format(i,nSteps))
acceptanceRatio/=subSteps
l2_acc/=subSteps
dis2_acc/=subSteps
e_acc/=subSteps
eV_acc/=subSteps
with open("l2.dat","a") as f:
f.write("{} {}\n".format(i,l2_acc) )
with open("dis2.dat","a") as f:
f.write("{} {}\n".format(i,dis2_acc) )
with open("energy.dat","a") as f:
f.write("{} {}\n".format(i,e_acc) )
with open("eV.dat","a") as f:
f.write("{} {}\n".format(i,eV_acc) )
print("Acceptance ratio: {}".format(acceptanceRatio))