-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathspanner-loader.py
350 lines (286 loc) · 10.7 KB
/
spanner-loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import re
import csv
import gzip
import uuid
import codecs
import argparse
import logging
from collections import OrderedDict
from google.oauth2 import service_account
from google.cloud import storage, spanner
apply_type = {
'INTEGER': lambda x: int(x),
'INT64': lambda x: int(x),
'FLOAT64': lambda x: float(x),
'TIMESTAMP': lambda x: get_timestamp_with_nanoseconds(x),
'STRING': lambda x: str(x),
'DATE': lambda x: get_date(x)
}
def unescaped_str(arg_str):
return codecs.decode(str(arg_str), 'unicode_escape')
def download_blob(bucket_name, source_blob_name, destination_file_name):
"""Downloads a blob from the bucket."""
storage_client = storage.Client()
bucket = storage_client.get_bucket(bucket_name)
blob = bucket.blob(source_blob_name)
blob.download_to_filename(destination_file_name)
print('Blob {} downloaded to {}.'.format(
source_blob_name,
destination_file_name))
def parse_schema(schema_file):
""" Parse a local comma separated schema file and return a dict mapping of
column name -> column type """
with open(schema_file, 'r') as schema:
col_mapping = OrderedDict()
columns = schema.read().split(",")
for column in columns:
column = re.sub(r'[\n\t\s]*', '', column)
col_name, col_type = column.split(":")
col_mapping[col_name] = col_type
return col_mapping
def get_timestamp_with_nanoseconds(timestamp_string):
from google.api_core import datetime_helpers
from datetime import datetime
date_tmp = None
if "." in timestamp_string:
date_tmp = datetime.strptime(timestamp_string, '%Y-%m-%d %H:%M:%S.%f')
else:
date_tmp = datetime.strptime(timestamp_string, '%Y-%m-%d %H:%M:%S')
timestamp=datetime_helpers.DatetimeWithNanoseconds(date_tmp.year, date_tmp.month, date_tmp.day, date_tmp.hour, date_tmp.minute, date_tmp.second, date_tmp.microsecond)
return timestamp
def get_date(date_string):
from datetime import datetime
date_tmp = datetime.strptime(date_string, "%Y-%m-%d").date()
return date_tmp
def printProgressBar(iteration,
total,
prefix='',
suffix='',
decimals=1,
length=100,
fill= '█'):
""" https://stackoverflow.com/questions/3173320/text-progress-bar-in-the-console
Call in a loop to create terminal progress bar
@params:
iteration - Required : current iteration (Int)
total - Required : total iterations (Int)
prefix - Optional : prefix string (Str)
suffix - Optional : suffix string (Str)
decimals - Optional : positive number of decimals in percent complete (Int)
length - Optional : character length of bar (Int)
fill - Optional : bar fill character (Str)
"""
percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total)))
filledLength = int(length * iteration // total)
bar = fill * filledLength + '-' * (length - filledLength)
print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = '\r')
# Print New Line on Complete
if iteration == total:
print()
def load_file(instance_id,
database_id,
table_id,
batchsize,
bucket_name,
file_name,
schema_file,
delimiter,
dry_run,
verbose,
debug,
add_uuid,
project_id=None,
path_to_credentials=None):
# Construct any arguments to be passed to the Spanner client init. These
# are optional since in cases when gcloud SDK is configured, or when
# pulling from instance metadata it is not necessary to manually specify
client_args = {}
if path_to_credentials:
client_args['credentials'] = service_account.Credentials.from_service_account_file(path_to_credentials)
if project_id:
client_args['project'] = project_id
# Build Spanner clients and set instance/database based on arguments
# TODO (djrut): Add exception handling
spanner_client = spanner.Client(**client_args)
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)
# Generate a unique local temporary file name to allow multiple invocations
# of the tool from the same parent directory, and enable path to
# multi-threaded loader in future
local_file_name = ''.join(['.spanner_loader_tmp-', str(uuid.uuid4())])
# TODO (djrut): Add exception handling
download_blob(bucket_name, file_name, local_file_name)
# Figure out the source and target column names based on the schema file
# provided, and add a uuid if that option is enabled
col_mapping = parse_schema(schema_file=schema_file)
src_col = list(col_mapping.keys())
if add_uuid:
target_col = ['uuid'] + src_col
else:
target_col = src_col
print('Detected {} columns in source schema: {}'
.format(len(col_mapping), src_col))
# Determine total number of rows in source file. This is required to
# gracefully handle the terminal partial batch at the tail of file
print('Determining number of rows in source file {}...'
.format(file_name))
with gzip.open(local_file_name, "rt") as source_file:
reader = csv.DictReader(source_file,
delimiter=delimiter,
fieldnames=src_col)
total_rows = sum(1 for row in reader)
print('Detected {:,} rows in source file: {}'
.format(total_rows, file_name))
# Re-initialize the row iterator, for reals this time
with gzip.open(local_file_name, "rt") as source_file:
reader = csv.DictReader(source_file,
delimiter=delimiter,
fieldnames=src_col)
# Initialize counter variables
row_cnt = 1
batch_cnt = 0
insert_cnt = 0
row_batch = []
for row in reader:
skip_row = False
target_row = []
source_row = OrderedDict(((col, row[col]) for col in src_col))
printProgressBar(row_cnt,
total_rows,
prefix='Rows loaded: {:,}/{:,}'
.format(row_cnt, total_rows))
if add_uuid:
target_row.append(str(uuid.uuid4()))
for col_name, col_value in source_row.items():
logging.debug('Processing column: {} = {}'
.format(col_name, col_value))
try:
target_cell = apply_type[col_mapping[col_name]](col_value)
except ValueError as err:
logging.warning(('Bad field detected in row {:,}: '
'col = {}, value = {} '
'Skipping row...')
.format(row_cnt, col_name, col_value))
skip_row = True
break
else:
target_row.append(target_cell)
if not skip_row:
row_batch.append(target_row)
batch_cnt += 1
insert_cnt += 1
if (batch_cnt >= batchsize) or (row_cnt == total_rows):
if not dry_run:
with database.batch() as batch:
batch.insert(
table=table_id,
columns=target_col,
values=row_batch
)
logging.info('Inserted {} rows into table {}'
.format(batch_cnt, table_id))
else:
print('Dry-run batch = {}'
.format(row_batch))
batch_cnt = 0
row_batch = []
if row_cnt < total_rows:
row_cnt += 1
print('Load job complete for source file {}. Inserted {} of {} rows'
.format(file_name, insert_cnt, row_cnt))
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description=('Spanner batch loader utility'))
parser.add_argument(
'-V',
'--verbose',
default=False,
action='store_true',
help='Enable verbose logging'
)
parser.add_argument(
'-D',
'--debug',
default=False,
action='store_true',
help='Enable debug logging'
)
parser.add_argument(
'--dry-run',
default=False,
action='store_true',
help='Perform dry-run without actually inserting rows'
)
parser.add_argument(
'--add-uuid',
default=False,
action='store_true',
help='Add a uuid column to target row'
)
parser.add_argument(
'--instance_id',
required=True,
help='Your Cloud Spanner instance ID.'
)
parser.add_argument(
'--database_id',
required=True,
help='Your Cloud Spanner database ID.'
)
parser.add_argument(
'--table_id',
required=True,
help='Your table name'
)
parser.add_argument(
'--batchsize',
default=32,
type=int,
help='The number of rows to insert in a batch'
)
parser.add_argument(
'--delimiter',
type=unescaped_str,
default=',',
help='The delimiter used between columns in source file'
)
parser.add_argument(
'--bucket_name',
required=True,
help='The name of the bucket containing the source file'
)
parser.add_argument(
'--file_name',
required=True,
help='The csv input data file'
)
parser.add_argument(
'--schema_file',
required=True,
help='The format file describing the input data file'
)
parser.add_argument(
'--project_id',
required=False,
help='Your Google Cloud Platform project ID.'
)
parser.add_argument(
'--path_to_credentials',
required=False,
help='Path to the json file with the credentials.'
)
args = parser.parse_args().__dict__
# Setup logging levels based on verbosity setting
FORMAT = '%(levelname)s: [%(filename)s/%(funcName)s] %(message)s'
level = logging.WARNING
# Mute certain overly verbose modules
logging.getLogger("googleapiclient").setLevel(level)
logging.getLogger("oauth2client").setLevel(level)
if args['verbose']:
level = logging.INFO
if args['debug']:
level = logging.DEBUG
logging.getLogger("googleapiclient").setLevel(level)
logging.getLogger("oauth2client").setLevel(level)
logging.basicConfig(level=level, format=FORMAT)
load_file(**args)