forked from bubbliiiing/yolov4-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
315 lines (280 loc) · 14.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#-------------------------------------#
# 对数据集进行训练
#-------------------------------------#
import os
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from tqdm import tqdm
from nets.yolo4 import YoloBody
from nets.yolo_training import Generator, YOLOLoss
from utils.dataloader import YoloDataset, yolo_dataset_collate
#---------------------------------------------------#
# 获得类和先验框
#---------------------------------------------------#
def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def get_anchors(anchors_path):
'''loads the anchors from a file'''
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape([-1,3,2])[::-1,:,:]
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def fit_one_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,genval,Epoch,cuda):
total_loss = 0
val_loss = 0
net.train()
with tqdm(total=epoch_size,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(gen):
if iteration >= epoch_size:
break
images, targets = batch[0], batch[1]
with torch.no_grad():
if cuda:
images = Variable(torch.from_numpy(images).type(torch.FloatTensor)).cuda()
targets = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets]
else:
images = Variable(torch.from_numpy(images).type(torch.FloatTensor))
targets = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets]
#----------------------#
# 清零梯度
#----------------------#
optimizer.zero_grad()
#----------------------#
# 前向传播
#----------------------#
outputs = net(images)
losses = []
num_pos_all = 0
#----------------------#
# 计算损失
#----------------------#
for i in range(3):
loss_item, num_pos = yolo_losses[i](outputs[i], targets)
losses.append(loss_item)
num_pos_all += num_pos
loss = sum(losses) / num_pos_all
#----------------------#
# 反向传播
#----------------------#
loss.backward()
optimizer.step()
total_loss += loss.item()
pbar.set_postfix(**{'total_loss': total_loss / (iteration + 1),
'lr' : get_lr(optimizer)})
pbar.update(1)
net.eval()
print('Start Validation')
with tqdm(total=epoch_size_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(genval):
if iteration >= epoch_size_val:
break
images_val, targets_val = batch[0], batch[1]
with torch.no_grad():
if cuda:
images_val = Variable(torch.from_numpy(images_val).type(torch.FloatTensor)).cuda()
targets_val = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets_val]
else:
images_val = Variable(torch.from_numpy(images_val).type(torch.FloatTensor))
targets_val = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets_val]
optimizer.zero_grad()
outputs = net(images_val)
losses = []
num_pos_all = 0
for i in range(3):
loss_item, num_pos = yolo_losses[i](outputs[i], targets_val)
losses.append(loss_item)
num_pos_all += num_pos
loss = sum(losses) / num_pos_all
val_loss += loss.item()
pbar.set_postfix(**{'total_loss': val_loss / (iteration + 1)})
pbar.update(1)
print('Finish Validation')
print('Epoch:'+ str(epoch+1) + '/' + str(Epoch))
print('Total Loss: %.4f || Val Loss: %.4f ' % (total_loss/(epoch_size+1),val_loss/(epoch_size_val+1)))
print('Saving state, iter:', str(epoch+1))
torch.save(model.state_dict(), 'logs/Epoch%d-Total_Loss%.4f-Val_Loss%.4f.pth'%((epoch+1),total_loss/(epoch_size+1),val_loss/(epoch_size_val+1)))
#----------------------------------------------------#
# 检测精度mAP和pr曲线计算参考视频
# https://www.bilibili.com/video/BV1zE411u7Vw
#----------------------------------------------------#
if __name__ == "__main__":
#-------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
#-------------------------------#
Cuda = True
#-------------------------------#
# Dataloder的使用
#-------------------------------#
Use_Data_Loader = True
#------------------------------------------------------#
# 是否对损失进行归一化,用于改变loss的大小
# 用于决定计算最终loss是除上batch_size还是除上正样本数量
#------------------------------------------------------#
normalize = False
#-------------------------------#
# 输入的shape大小
# 显存比较小可以使用416x416
# 显存比较大可以使用608x608
#-------------------------------#
input_shape = (416,416)
#----------------------------------------------------#
# classes和anchor的路径,非常重要
# 训练前一定要修改classes_path,使其对应自己的数据集
#----------------------------------------------------#
anchors_path = 'model_data/yolo_anchors.txt'
classes_path = 'model_data/voc_classes.txt'
#----------------------------------------------------#
# 获取classes和anchor
#----------------------------------------------------#
class_names = get_classes(classes_path)
anchors = get_anchors(anchors_path)
num_classes = len(class_names)
#------------------------------------------------------#
# Yolov4的tricks应用
# mosaic 马赛克数据增强 True or False
# 实际测试时mosaic数据增强并不稳定,所以默认为False
# Cosine_scheduler 余弦退火学习率 True or False
# label_smoothing 标签平滑 0.01以下一般 如0.01、0.005
#------------------------------------------------------#
mosaic = False
Cosine_lr = False
smoooth_label = 0
#------------------------------------------------------#
# 创建yolo模型
# 训练前一定要修改classes_path和对应的txt文件
#------------------------------------------------------#
model = YoloBody(len(anchors[0]), num_classes)
#------------------------------------------------------#
# 权值文件请看README,百度网盘下载
#------------------------------------------------------#
model_path = "model_data/yolo4_weights.pth"
print('Loading weights into state dict...')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_dict = model.state_dict()
pretrained_dict = torch.load(model_path, map_location=device)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print('Finished!')
net = model.train()
if Cuda:
net = torch.nn.DataParallel(model)
cudnn.benchmark = True
net = net.cuda()
# 建立loss函数
yolo_losses = []
for i in range(3):
yolo_losses.append(YOLOLoss(np.reshape(anchors,[-1,2]),num_classes, \
(input_shape[1], input_shape[0]), smoooth_label, Cuda, normalize))
#----------------------------------------------------#
# 获得图片路径和标签
#----------------------------------------------------#
annotation_path = '2007_train.txt'
#----------------------------------------------------------------------#
# 验证集的划分在train.py代码里面进行
# 2007_test.txt和2007_val.txt里面没有内容是正常的。训练不会使用到。
# 当前划分方式下,验证集和训练集的比例为1:9
#----------------------------------------------------------------------#
val_split = 0.1
with open(annotation_path) as f:
lines = f.readlines()
np.random.seed(10101)
np.random.shuffle(lines)
np.random.seed(None)
num_val = int(len(lines)*val_split)
num_train = len(lines) - num_val
#------------------------------------------------------#
# 主干特征提取网络特征通用,冻结训练可以加快训练速度
# 也可以在训练初期防止权值被破坏。
# Init_Epoch为起始世代
# Freeze_Epoch为冻结训练的世代
# Epoch总训练世代
# 提示OOM或者显存不足请调小Batch_size
#------------------------------------------------------#
if True:
lr = 1e-3
Batch_size = 4
Init_Epoch = 0
Freeze_Epoch = 50
#----------------------------------------------------------------------------#
# 我在实际测试时,发现optimizer的weight_decay起到了反作用,
# 所以去除掉了weight_decay,大家也可以开起来试试,一般是weight_decay=5e-4
#----------------------------------------------------------------------------#
optimizer = optim.Adam(net.parameters(),lr)
if Cosine_lr:
lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=5, eta_min=1e-5)
else:
lr_scheduler = optim.lr_scheduler.StepLR(optimizer,step_size=1,gamma=0.92)
if Use_Data_Loader:
train_dataset = YoloDataset(lines[:num_train], (input_shape[0], input_shape[1]), mosaic=mosaic, is_train=True)
val_dataset = YoloDataset(lines[num_train:], (input_shape[0], input_shape[1]), mosaic=False, is_train=False)
gen = DataLoader(train_dataset, shuffle=True, batch_size=Batch_size, num_workers=4, pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
gen_val = DataLoader(val_dataset, shuffle=True, batch_size=Batch_size, num_workers=4,pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
else:
gen = Generator(Batch_size, lines[:num_train],
(input_shape[0], input_shape[1])).generate(train=True, mosaic = mosaic)
gen_val = Generator(Batch_size, lines[num_train:],
(input_shape[0], input_shape[1])).generate(train=False, mosaic = mosaic)
epoch_size = max(1, num_train//Batch_size)
epoch_size_val = num_val//Batch_size
#------------------------------------#
# 冻结一定部分训练
#------------------------------------#
for param in model.backbone.parameters():
param.requires_grad = False
for epoch in range(Init_Epoch,Freeze_Epoch):
fit_one_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,gen_val,Freeze_Epoch,Cuda)
lr_scheduler.step()
if True:
lr = 1e-4
Batch_size = 2
Freeze_Epoch = 50
Unfreeze_Epoch = 100
#----------------------------------------------------------------------------#
# 我在实际测试时,发现optimizer的weight_decay起到了反作用,
# 所以去除掉了weight_decay,大家也可以开起来试试,一般是weight_decay=5e-4
#----------------------------------------------------------------------------#
optimizer = optim.Adam(net.parameters(),lr)
if Cosine_lr:
lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=5, eta_min=1e-5)
else:
lr_scheduler = optim.lr_scheduler.StepLR(optimizer,step_size=1,gamma=0.92)
if Use_Data_Loader:
train_dataset = YoloDataset(lines[:num_train], (input_shape[0], input_shape[1]), mosaic=mosaic, is_train=True)
val_dataset = YoloDataset(lines[num_train:], (input_shape[0], input_shape[1]), mosaic=False, is_train=False)
gen = DataLoader(train_dataset, shuffle=True, batch_size=Batch_size, num_workers=4, pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
gen_val = DataLoader(val_dataset, shuffle=True, batch_size=Batch_size, num_workers=4,pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
else:
gen = Generator(Batch_size, lines[:num_train],
(input_shape[0], input_shape[1])).generate(train=True, mosaic = mosaic)
gen_val = Generator(Batch_size, lines[num_train:],
(input_shape[0], input_shape[1])).generate(train=False, mosaic = mosaic)
epoch_size = max(1, num_train//Batch_size)
epoch_size_val = num_val//Batch_size
#------------------------------------#
# 解冻后训练
#------------------------------------#
for param in model.backbone.parameters():
param.requires_grad = True
for epoch in range(Freeze_Epoch,Unfreeze_Epoch):
fit_one_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,gen_val,Unfreeze_Epoch,Cuda)
lr_scheduler.step()