-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathqs_l_m.f90
174 lines (95 loc) · 3.36 KB
/
qs_l_m.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
MODULE qs_L_M
! AXISYMMETRIC
USE sparse_matrix_profiles
USE prep_mesh_p1p2_sp
CONTAINS
SUBROUTINE Dirichlet_L_M (js_D, AA, symmetric)
!==============================================
! This entry point modifies the elements of
! the sparse matrix AA (in CSR format) to
! impose Dirichlet boundary conditions
IMPLICIT NONE
INTEGER, DIMENSION(:), INTENT(IN) :: js_D
TYPE(CSR_MUMPS_Matrix), INTENT(INOUT) :: AA
LOGICAL, OPTIONAL, INTENT(IN) :: symmetric
REAL (KIND=8), PARAMETER :: irons = 1.0d30
INTEGER :: n, i, p
IF (PRESENT(symmetric)) THEN
DO n = 1, SIZE(js_D); i = js_D(n)
DO p = AA%i(i), AA%i(i+1) - 1
IF (AA%j(p) == i) THEN
AA%e(p) = irons
EXIT
ENDIF
ENDDO
ENDDO
ELSE
! The possible symmetric character of matrix AA%e is destroyed
DO n = 1, SIZE(js_D); i = js_D(n)
DO p = AA%i(i), AA%i(i+1) - 1
IF (AA%j(p) == i) THEN
AA%e(p) = 1
ELSE
AA%e(p) = 0
ENDIF
ENDDO
ENDDO
ENDIF
END SUBROUTINE Dirichlet_L_M
!------------------------------------------------------------------------------
SUBROUTINE qs_0y0_L_M (alpha, AA, symmetric)
!============================================
! alpha < w, y _ > ===> AA%e
USE Gauss_points
USE Gauss_points_L
IMPLICIT NONE
REAL(KIND=8), INTENT(IN) :: alpha
TYPE(CSR_MUMPS_Matrix), INTENT(INOUT) :: AA
LOGICAL, OPTIONAL, INTENT(IN) :: symmetric
INTEGER :: m, l, ni, nj, i, j, p
REAL(KIND=8) :: al, x
AA%e = 0
DO m = 1, me
DO l = 1, l_G_L
al = alpha * jac_py_L(l,m)
DO ni = 1, n_w_L; i = jj(ni, m)
DO nj = 1, n_w_L; j = jj(nj, m)
IF (PRESENT(symmetric) .AND. i > j) CYCLE
x = ww_L(ni,l) * al * ww_L(nj,l)
DO p = AA%i(i), AA%i(i+1) - 1
IF (AA%j(p) == j) THEN; AA%e(p) = AA%e(p) + x; EXIT; ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
END SUBROUTINE qs_0y0_L_M
!------------------------------------------------------------------------------
SUBROUTINE qs_1y1_L_M (alpha, AA, symmetric)
!===========================================
! alpha << (Dw), y (D_) >> ===> AA%e
USE Gauss_points
USE Gauss_points_L
IMPLICIT NONE
REAL(KIND=8), INTENT(IN) :: alpha
TYPE(CSR_MUMPS_Matrix), INTENT(INOUT) :: AA
LOGICAL, OPTIONAL, INTENT(IN) :: symmetric
INTEGER :: m, l, ni, nj, i, j, p
REAL(KIND=8) :: al, x
AA%e = 0
DO m = 1, me
DO l = 1, l_G_L
al = alpha * jac_py_L(l,m)
DO ni = 1, n_w_L; i = jj(ni, m)
DO nj = 1, n_w_L; j = jj(nj, m)
IF (PRESENT(symmetric) .AND. i > j) CYCLE
x = al * SUM(dw_L(:,ni,l,m) * dw_L(:,nj,l,m))
DO p = AA%i(i), AA%i(i+1) - 1
IF (AA%j(p) == j) THEN; AA%e(p) = AA%e(p) + x; EXIT; ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
END SUBROUTINE qs_1y1_L_M
END MODULE qs_L_M