-
Notifications
You must be signed in to change notification settings - Fork 161
/
Copy pathslope.rs
373 lines (339 loc) · 13.2 KB
/
slope.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/*
This tool is part of the WhiteboxTools geospatial analysis library.
Authors: Dr. John Lindsay
Created: 22/06/2017
Last Modified: 21/02/2020
License: MIT
*/
use crate::raster::*;
use crate::tools::*;
use num_cpus;
use std::env;
use std::f64;
use std::io::{Error, ErrorKind};
use std::path;
use std::sync::mpsc;
use std::sync::Arc;
use std::thread;
/// This tool calculates slope gradient (i.e. slope steepness in degrees, radians, or percent) for each grid cell
/// in an input digital elevation model (DEM). The user must specify the name of the input
/// DEM (`--dem`) and the output raster image. The *Z conversion factor* is only important
/// when the vertical and horizontal units are not the same in the DEM. When this is the case,
/// the algorithm will multiply each elevation in the DEM by the Z conversion factor. If the
/// DEM is in the geographic coordinate system (latitude and longitude), the following equation
/// is used:
///
/// > zfactor = 1.0 / (113200.0 x cos(mid_lat))
///
/// where `mid_lat` is the latitude of the centre of the raster, in radians.
///
/// The tool uses Horn's (1981) 3rd-order finite difference method to estimate slope. Given
/// the following clock-type grid cell numbering scheme (Gallant and Wilson, 2000),
///
/// | 7 | 8 | 1 | \
/// | 6 | 9 | 2 | \
/// | 5 | 4 | 3 |
///
/// > slope = arctan(f<sub>x</sub><sup>2</sup> + f<sub>y</sub><sup>2</sup>)<sup>0.5</sup>
///
/// where,
///
/// > f<sub>x</sub> = (z<sub>3</sub> - z<sub>5</sub> + 2(z<sub>2</sub> - z<sub>6</sub>) + z<sub>1</sub> - z<sub>7</sub>) / 8 * Δx
///
/// and,
///
/// > f<sub>y</sub> = (z<sub>7</sub> - z<sub>5</sub> + 2(z<sub>8</sub> - z<sub>4</sub>) + z<sub>1</sub> - z<sub>3</sub>) / * Δy
///
/// Δx and Δy are the grid resolutions in the x and y direction respectively
///
/// # Reference
/// Gallant, J. C., and J. P. Wilson, 2000, Primary topographic attributes, in Terrain Analysis: Principles
/// and Applications, edited by J. P. Wilson and J. C. Gallant pp. 51-86, John Wiley, Hoboken, N.J.
///
/// # See Also
/// `Aspect`, `PlanCurvature`, `ProfileCurvature`
pub struct Slope {
name: String,
description: String,
toolbox: String,
parameters: Vec<ToolParameter>,
example_usage: String,
}
impl Slope {
pub fn new() -> Slope {
// public constructor
let name = "Slope".to_string();
let toolbox = "Geomorphometric Analysis".to_string();
let description = "Calculates a slope raster from an input DEM.".to_string();
let mut parameters = vec![];
parameters.push(ToolParameter {
name: "Input DEM File".to_owned(),
flags: vec!["-i".to_owned(), "--dem".to_owned()],
description: "Input raster DEM file.".to_owned(),
parameter_type: ParameterType::ExistingFile(ParameterFileType::Raster),
default_value: None,
optional: false,
});
parameters.push(ToolParameter {
name: "Output File".to_owned(),
flags: vec!["-o".to_owned(), "--output".to_owned()],
description: "Output raster file.".to_owned(),
parameter_type: ParameterType::NewFile(ParameterFileType::Raster),
default_value: None,
optional: false,
});
parameters.push(ToolParameter {
name: "Z Conversion Factor".to_owned(),
flags: vec!["--zfactor".to_owned()],
description:
"Optional multiplier for when the vertical and horizontal units are not the same."
.to_owned(),
parameter_type: ParameterType::Float,
default_value: Some("1.0".to_owned()),
optional: true,
});
parameters.push(ToolParameter {
name: "Units".to_owned(),
flags: vec!["--units".to_owned()],
description: "Units of output raster; options include 'degrees', 'radians', 'percent'"
.to_owned(),
parameter_type: ParameterType::OptionList(vec![
"degrees".to_owned(),
"radians".to_owned(),
"percent".to_owned(),
]),
default_value: Some("degrees".to_owned()),
optional: true,
});
let sep: String = path::MAIN_SEPARATOR.to_string();
let p = format!("{}", env::current_dir().unwrap().display());
let e = format!("{}", env::current_exe().unwrap().display());
let mut short_exe = e
.replace(&p, "")
.replace(".exe", "")
.replace(".", "")
.replace(&sep, "");
if e.contains(".exe") {
short_exe += ".exe";
}
let usage = format!(
">>.*{} -r={} -v --wd=\"*path*to*data*\" --dem=DEM.tif -o=output.tif --units=\"radians\"",
short_exe, name
)
.replace("*", &sep);
Slope {
name: name,
description: description,
toolbox: toolbox,
parameters: parameters,
example_usage: usage,
}
}
}
impl WhiteboxTool for Slope {
fn get_source_file(&self) -> String {
String::from(file!())
}
fn get_tool_name(&self) -> String {
self.name.clone()
}
fn get_tool_description(&self) -> String {
self.description.clone()
}
fn get_tool_parameters(&self) -> String {
let mut s = String::from("{\"parameters\": [");
for i in 0..self.parameters.len() {
if i < self.parameters.len() - 1 {
s.push_str(&(self.parameters[i].to_string()));
s.push_str(",");
} else {
s.push_str(&(self.parameters[i].to_string()));
}
}
s.push_str("]}");
s
}
fn get_example_usage(&self) -> String {
self.example_usage.clone()
}
fn get_toolbox(&self) -> String {
self.toolbox.clone()
}
fn run<'a>(
&self,
args: Vec<String>,
working_directory: &'a str,
verbose: bool,
) -> Result<(), Error> {
let mut input_file = String::new();
let mut output_file = String::new();
let mut z_factor = 1f64;
let mut units_numeric = 1; // degrees
if args.len() == 0 {
return Err(Error::new(
ErrorKind::InvalidInput,
"Tool run with no parameters.",
));
}
for i in 0..args.len() {
let mut arg = args[i].replace("\"", "");
arg = arg.replace("\'", "");
let cmd = arg.split("="); // in case an equals sign was used
let vec = cmd.collect::<Vec<&str>>();
let mut keyval = false;
if vec.len() > 1 {
keyval = true;
}
let flag_val = vec[0].to_lowercase().replace("--", "-");
if flag_val == "-i" || flag_val == "-input" || flag_val == "-dem" {
if keyval {
input_file = vec[1].to_string();
} else {
input_file = args[i + 1].to_string();
}
} else if flag_val == "-o" || flag_val == "-output" {
if keyval {
output_file = vec[1].to_string();
} else {
output_file = args[i + 1].to_string();
}
} else if flag_val == "-zfactor" {
if keyval {
z_factor = vec[1]
.to_string()
.parse::<f64>()
.expect(&format!("Error parsing {}", flag_val));
} else {
z_factor = args[i + 1]
.to_string()
.parse::<f64>()
.expect(&format!("Error parsing {}", flag_val));
}
} else if flag_val == "-units" {
let units = if keyval {
vec[1].to_string()
} else {
args[i + 1].to_string()
};
units_numeric = if units.to_lowercase().contains("deg") {
1
} else if units.contains("rad") {
2
} else {
3
};
}
}
if verbose {
println!("***************{}", "*".repeat(self.get_tool_name().len()));
println!("* Welcome to {} *", self.get_tool_name());
println!("***************{}", "*".repeat(self.get_tool_name().len()));
}
let sep: String = path::MAIN_SEPARATOR.to_string();
let mut progress: usize;
let mut old_progress: usize = 1;
if !input_file.contains(&sep) && !input_file.contains("/") {
input_file = format!("{}{}", working_directory, input_file);
}
if !output_file.contains(&sep) && !output_file.contains("/") {
output_file = format!("{}{}", working_directory, output_file);
}
if verbose {
println!("Reading data...")
};
let input = Arc::new(Raster::new(&input_file, "r")?);
let start = Instant::now();
let eight_grid_res = input.configs.resolution_x * 8.0;
if input.is_in_geographic_coordinates() {
// calculate a new z-conversion factor
let mut mid_lat = (input.configs.north - input.configs.south) / 2.0;
if mid_lat <= 90.0 && mid_lat >= -90.0 {
mid_lat = mid_lat.to_radians();
z_factor = 1.0 / (113200.0 * mid_lat.cos());
}
}
let mut output = Raster::initialize_using_file(&output_file, &input);
if output.configs.data_type != DataType::F32 && output.configs.data_type != DataType::F64 {
output.configs.data_type = DataType::F32;
}
let rows = input.configs.rows as isize;
let num_procs = num_cpus::get() as isize;
let (tx, rx) = mpsc::channel();
for tid in 0..num_procs {
let input = input.clone();
let tx1 = tx.clone();
thread::spawn(move || {
let nodata = input.configs.nodata;
let columns = input.configs.columns as isize;
let d_x = [1, 1, 1, 0, -1, -1, -1, 0];
let d_y = [-1, 0, 1, 1, 1, 0, -1, -1];
let mut n: [f64; 8] = [0.0; 8];
let mut z: f64;
let (mut fx, mut fy): (f64, f64);
for row in (0..rows).filter(|r| r % num_procs == tid) {
let mut data = vec![nodata; columns as usize];
for col in 0..columns {
z = input[(row, col)];
if z != nodata {
for c in 0..8 {
n[c] = input[(row + d_y[c], col + d_x[c])];
if n[c] != nodata {
n[c] = n[c] * z_factor;
} else {
n[c] = z * z_factor;
}
}
// calculate slope
fy = (n[6] - n[4] + 2.0 * (n[7] - n[3]) + n[0] - n[2]) / eight_grid_res;
fx = (n[2] - n[4] + 2.0 * (n[1] - n[5]) + n[0] - n[6]) / eight_grid_res;
data[col as usize] = match units_numeric {
1 => (fx * fx + fy * fy).sqrt().atan().to_degrees(), // degrees
2 => (fx * fx + fy * fy).sqrt().atan(), // radians
_ => (fx * fx + fy * fy).sqrt() * 100f64, // percent
};
}
}
tx1.send((row, data)).unwrap();
}
});
}
for row in 0..rows {
let data = rx.recv().expect("Error receiving data from thread.");
output.set_row_data(data.0, data.1);
if verbose {
progress = (100.0_f64 * row as f64 / (rows - 1) as f64) as usize;
if progress != old_progress {
println!("Performing analysis: {}%", progress);
old_progress = progress;
}
}
}
let elapsed_time = get_formatted_elapsed_time(start);
output.configs.palette = "spectrum_soft.plt".to_string();
output.add_metadata_entry(format!(
"Created by whitebox_tools\' {} tool",
self.get_tool_name()
));
output.add_metadata_entry(format!("Input file: {}", input_file));
output.add_metadata_entry(format!("Z-factor: {}", z_factor));
output.add_metadata_entry(format!("Elapsed Time (excluding I/O): {}", elapsed_time));
if verbose {
println!("Saving data...")
};
let _ = match output.write() {
Ok(_) => {
if verbose {
println!("Output file written")
}
}
Err(e) => return Err(e),
};
if verbose {
println!(
"{}",
&format!("Elapsed Time (excluding I/O): {}", elapsed_time)
);
}
Ok(())
}
}