-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
109 lines (91 loc) · 3.43 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import torch
import numpy as np
import pandas as pd
from src.crowd_count import CrowdCounter
from src import network
from src.data_loader import ImageDataLoader
from src import utils
from scipy.io import loadmat
def testimage(modelname, camname):
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
vis = False
save_output = False
#test data and model file path
if camname == 0:
data_path = '../data/test/images/'
else:
data_path = '../data/test/images2/'
if modelname == 'A':
model_path = './final_models/cmtl_shtechA_204.h5'
else:
model_path = './final_models/cmtl_shtechB_768.h5'
print("Model name:" , modelname," Camname: ", camname)
gt_flag = False
if gt_flag:
gt_path = '../dataset/ShanghaiTech/part_A/test_data/ground_truth/'
# =============================================================================
# for i in range(1, 4):
# gt_name = os.path.join(gt_path,'img_' + format(i, '04') + '_ann.mat')
# print(gt_name)
# x = loadmat(gt_name)
# print (len(x['annPoints']))
#
# =============================================================================
output_dir = './output/'
model_name = os.path.basename(model_path).split('.')[0]
file_results = os.path.join(output_dir,'results_' + model_name + '_.txt')
if not os.path.exists(output_dir):
os.mkdir(output_dir)
output_dir = os.path.join(output_dir, 'density_maps_' + model_name)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
#load test data
data_loader = ImageDataLoader(data_path, shuffle=False, gt_downsample=True, pre_load=True)
net = CrowdCounter()
trained_model = os.path.join(model_path)
network.load_net(trained_model, net)
net.cuda()
net.eval()
mae = 0.0
mse = 0.0
i = 1
#df = pd.read_csv("../etcount.csv")
#df = df.set_index('IMG_NAME')
#df['GROUND_TRUTH'] = 0.0
#df['MTL-v4-A10'] = 0.0
for blob in data_loader:
if gt_flag:
gt_name = os.path.join(gt_path, 'GT_'+format(blob['fname'].split('.')[0]) + '.mat')
x = loadmat(gt_name)
#gt_count = len(x['image_info'][0][0][0][0][0])
#df.at[blob['fname'].split('.')[0], 'GROUND_TRUTH'] = gt_count
i+=1
im_data = blob['data']
density_map = net(im_data)
density_map = density_map.data.cpu().numpy()
x = len(density_map[0][0])
y = len(density_map[0][0][0])
half = (int)(x/2);
density_map1 = density_map[0][0][0:half][:]
density_map2 = density_map[0][0][half:][:]
print(x, y)
et_c1 = np.sum(density_map1)
et_c2 = np.sum(density_map2)
side = 'none'
if et_c1 > et_c2:
side = 'right'
else:
side = 'left'
print(et_c1, et_c2)
et_count = np.sum(density_map)
print (blob['fname'].split('.')[0],' Model Estimated count : ',et_count )
#df.at[blob['fname'].split('.')[0], 'MTL-v4-A'] = et_count
if vis:
utils.display_results(im_data, density_map)
if save_output:
utils.save_density_map(density_map, output_dir, 'output_' + blob['fname'].split('.')[0] + '.png')
return (et_count, side)
#df.to_csv('../etcount.csv')
#testimage('A', 1)