You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When I get to this row, I get an error. Why is that?
"metrics = model.train(train_data, n_epochs=n_epochs, logger=logger, update_fn=update_fn)"
[INFO] Training CoxMLP
TypeError Traceback (most recent call last)
in
18
19 # If you have validation data, you can add it as the second parameter to the function
---> 20 metrics = model.train(train_data, n_epochs=n_epochs, logger=logger, update_fn=update_fn)
D:\anaconda\lib\site-packages\deepsurv\deep_surv.py in train(self, train_data, valid_data, n_epochs, validation_frequency, patience, improvement_threshold, patience_increase, verbose, update_fn, **kwargs)
366 reached, looks at validation improvement to increase patience or
367 early stop.
--> 368 improvement_threshold: percentage of improvement needed to increase
369 patience.
370 patience_increase: multiplier to patience if threshold is reached.
D:\anaconda\lib\site-packages\deepsurv\deep_surv.py in _get_loss_updates(self, L1_reg, L2_reg, update_fn, max_norm, deterministic, **kwargs)
179 Returns Theano expressions for the network's loss function and parameter
180 updates.
--> 181
182 Parameters:
183 L1_reg: float for L1 weight regularization coefficient.
TypeError: nesterov_momentum() got an unexpected keyword argument 'logger'
The text was updated successfully, but these errors were encountered:
Are you still having this issue? It looks like the logger is being passed from the .train() function to the _get_train_valid_fn() which is then passing it up update_fn through the **kwargs.
Adding a logger=None parameter to the function signature of _get_train_valid_fn might fix the problem.
When I get to this row, I get an error. Why is that?
"metrics = model.train(train_data, n_epochs=n_epochs, logger=logger, update_fn=update_fn)"
[INFO] Training CoxMLP
TypeError Traceback (most recent call last)
in
18
19 # If you have validation data, you can add it as the second parameter to the function
---> 20 metrics = model.train(train_data, n_epochs=n_epochs, logger=logger, update_fn=update_fn)
D:\anaconda\lib\site-packages\deepsurv\deep_surv.py in train(self, train_data, valid_data, n_epochs, validation_frequency, patience, improvement_threshold, patience_increase, verbose, update_fn, **kwargs)
366 reached, looks at validation improvement to increase patience or
367 early stop.
--> 368 improvement_threshold: percentage of improvement needed to increase
369 patience.
370 patience_increase: multiplier to patience if threshold is reached.
D:\anaconda\lib\site-packages\deepsurv\deep_surv.py in _get_train_valid_fn(self, L1_reg, L2_reg, learning_rate, **kwargs)
208 updates = update_fn(
209 scaled_grads, self.params, **kwargs
--> 210 )
211 else:
212 updates = update_fn(
D:\anaconda\lib\site-packages\deepsurv\deep_surv.py in _get_loss_updates(self, L1_reg, L2_reg, update_fn, max_norm, deterministic, **kwargs)
179 Returns Theano expressions for the network's loss function and parameter
180 updates.
--> 181
182 Parameters:
183 L1_reg: float for L1 weight regularization coefficient.
TypeError: nesterov_momentum() got an unexpected keyword argument 'logger'
The text was updated successfully, but these errors were encountered: