-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_demo_env.py
41 lines (37 loc) · 1.01 KB
/
test_demo_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import time
import numpy as np
import yaml
import ray
from ray import tune
from ray.tune.registry import register_env
import pybullet as p
import gym
from gym.spaces import Box
from demo_env import DemoEnv
if __name__ == '__main__':
env = DemoEnv({
"dim": 2,
"waypoints": 4
})
try:
obs = env.reset()
cum_reward = 0
for i in range(1000):
goal_vec = -obs[:2]
goal_d = np.linalg.norm(goal_vec, ord=2)
if goal_d > 0:
goal_vec /= np.abs(goal_vec).max()*3
#print("a", goal_vec)
#goal_vec /= 100
obs, reward, done, _ = env.step(goal_vec)#env.action_space.sample())
cum_reward += reward
#print(obs)
print(obs, reward, cum_reward, done)
if done:
input(f"{i} Done")
obs = env.reset()
cum_reward = 0
#break
except Exception as e:
del env
print("Exit", e)