forked from saudiwin/idealstan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_gp.R
246 lines (186 loc) · 6.01 KB
/
test_gp.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# simulate GP ideal and fit it
require(rstan)
require(dplyr)
require(ggplot2)
require(forcats)
# classic ARMA stan model:
num_person <- 25
num_bills <- 200
alpha_int <- rnorm(num_person)
sigma <- 0.1
adj_in <- runif(num_person,-.8,.8)
t <- 100
# simulate the GP
alpha_true <- runif(n = num_person,2,3)
rho_true <- runif(n=num_person,2.5,5.5)
sigma_true <- runif(n=num_person,0.5,3)
N_total = num_person
x_total <- 20 * (0:(t - 1)) / (t - 1) - 10
simu_data <- list(alpha=alpha_true, rho=rho_true, sigma=sigma_true,
N=N_total, x=x_total, T=t)
sim_gauss <- "data {
int<lower=1> N;
int<lower=1> T;
real x[T];
real<lower=0> rho[N];
real<lower=0> alpha[N];
real<lower=0> sigma[N];
}
transformed data {
//create one covariance matrix for each legislator
matrix[T, T] cov[N];
matrix[T, T] L_cov[N];
for(n in 1:N) {
cov[n] = cov_exp_quad(x, alpha[n], rho[n])
+ diag_matrix(rep_vector(1e-10, T));
L_cov[n] = cholesky_decompose(cov[n]);
}
}
parameters {}
model {}
generated quantities {
matrix[N,T] f;
for(n in 1:N) {
f[n,] = multi_normal_cholesky_rng(rep_vector(0, T), L_cov[n])';
}
}"
simu_fit <- stan(model_code = sim_gauss, data=simu_data, iter=1,
chains=1, seed=494838, algorithm="Fixed_param")
# more realistic
Y <- rstan::extract(simu_fit)$f[1,,]
require(tidyr)
require(stringr)
y_plot <- as_data_frame(Y) %>% mutate(person=1:n()) %>%
gather(key=time,value=estimate,-person) %>%
mutate(time=as.numeric(str_extract(time,'[0-9]+')))
y_plot %>%
ggplot(aes(y=estimate,x=time)) +
geom_line(aes(group=person),alpha=0.5) +
theme(panel.grid = element_blank(),
panel.background = element_blank())
# plot data
#relevel to consrain
person_points <- rep(1:num_person,times=num_bills)
bill_points <- rep(1:num_bills,each=num_person)
restrict_high <- sort.int(alpha_int,index.return = T,decreasing = T)$ix[1]
restrict_low <- sort.int(alpha_int,index.return = T,decreasing = F)$ix[1]
# generate time points
time_points <- rep(1:t,each=num_bills/t)
time_points <- time_points[bill_points]
absence_discrim <- rnorm(num_bills)
absence_diff <- rnorm(num_bills)
reg_discrim <- rnorm(num_bills)
reg_diff <- rnorm(num_bills)
pr_absence <- sapply(1:length(person_points),function(n) {
Y[person_points[n],time_points[n]]*absence_discrim[bill_points[n]] - absence_diff[bill_points[n]]
}) %>% plogis()
pr_vote <- sapply(1:length(person_points),function(n) {
Y[person_points[n],time_points[n]]*reg_discrim[bill_points[n]] - reg_diff[bill_points[n]]
}) %>% plogis()
absent <- as.numeric(runif(length(person_points))<pr_absence)
present <- as.numeric(runif(length(person_points))<pr_vote)
#outcome <- ifelse(absent==0,present,3)
outcome <- as.numeric(runif(length(person_points))<pr_vote)
person_points <- factor(person_points)
person_points <- fct_relevel(person_points,as.character(restrict_high),
after=num_person)
# need to adjust for full gaussian process inference.
# only non-missing for now
# now fit a model to the observed series
stan_code <- '
data {
int N;
int L;
int B;
int T;
int ll[N];
int bb[N];
int tt[N];
int outcome[N];
real id_diff;
real id_diff_high;
}
parameters {
vector[L-1] alpha_free;
vector<lower=-0.8,upper=0.8>[L-1] adj_in_free;
vector[L] Y_start;
vector[T-1] Y_var;
vector[B] discrim;
vector[B] diff;
real<lower=0> sigma;
vector[1] high;
vector<lower=-0.8,upper=0.8>[1] adj_high;
}
transformed parameters {
vector[L] alpha;
vector[L] adj_in;
vector[1] low;
vector[L] Y[T];
low = high - id_diff;
alpha=append_row(alpha_free,high);
adj_in=append_row(adj_in_free,adj_high);
for(t in 1:T) {
if(t==1) {
Y[1] = Y_start;
} else {
Y[t] = alpha + adj_in .* Y[t-1] + sigma*Y_var[t-1];
}
}
}
model {
diff ~ normal(0,3);
discrim ~ normal(0,3);
alpha_free ~ normal(0,1);
adj_in_free ~ normal(0,2);
adj_high ~ normal(0,1);
sigma ~ exponential(1/.1);
high ~ normal(id_diff_high,.01);
Y_var ~ normal(0,1);
Y_start ~ normal(0,1);
for(n in 1:N) {
outcome[n] ~ bernoulli_logit(discrim[bb[n]] * (Y[tt[n],ll[n]]) - diff[bb[n]]);
}
}
'
to_stan <- stan_model(model_code = stan_code)
run_ar1 <- sampling(to_stan,data=list(N=length(outcome),
L=nrow(Y),
B=num_bills,
T=t,
ll=as.numeric(person_points),
bb=bill_points,
tt=time_points,
outcome=outcome,
id_diff=sort.int(alpha_int,index.return = T,decreasing = T)$x[1] -
sort.int(alpha_int,index.return = T,decreasing = F)$x[1],
id_diff_high=sort.int(alpha_int,index.return = T,decreasing = T)$x[1]),
chains=4,cores=4)
print(run_ar1)
all_res <- summary(run_ar1)
alpha <- all_res$summary[grepl(x=row.names(all_res$summary),
pattern='alpha\\['),
'mean']
alpha <- alpha[c(1:(restrict_high-1),num_person,(restrict_high):(num_person-1))]
cor(alpha,alpha_int)
adj_in_est <- all_res$summary[grepl(x=row.names(all_res$summary),
pattern='adj_in\\['),
'mean']
adj_in_est <- adj_in_est[c(1:(restrict_high-1),num_person,(restrict_high):(num_person-1))]
cor(adj_in_est,adj_in)
Y_est <- all_res$summary[grepl(x=row.names(all_res$summary),
pattern='Y\\['),
'mean']
cor(Y_est,c(Y[c(1:(restrict_high-1),num_person,(restrict_high):(num_person-1)),]))
# now try a random walk model
alpha_int <- -1.25
sigma <- 0.1
adj_in <- 1
t <- 20
Y <- .gen_ts_data(t=t,
adj_in=adj_in,
alpha_int=alpha_int,
sigma=sigma,
init_sides=0)
to_stan <- stan_model(model_code = stan_code)
run_rw <- sampling(to_stan,data=list(N=length(Y$t_11),
Y=Y$t_11))