- Python (3.5+)
- OpenVINO (optional)
Optionally, set up a virtual environment:
python -m pip install virtualenv
python -m virtualenv venv
. venv/bin/activate
Install Datumaro:
pip install 'git+https://github.com/opencv/cvat#egg=datumaro&subdirectory=datumaro'
You can change the installation branch with
.../cvat@<branch_name>#egg...
Also note--force-reinstall
parameter in this case.
As a standalone tool:
datum --help
As a python module:
The directory containing Datumaro should be in the
PYTHONPATH
environment variable orcvat/datumaro/
should be the current directory.
python -m datumaro --help
python datumaro/ --help
python datum.py --help
As a python library:
import datumaro
List of supported formats:
- COCO (
image_info
,instances
,person_keypoints
,captions
,labels
*)- Format specification
labels
are our extension - likeinstances
with onlycategory_id
- PASCAL VOC (
classification
,detection
,segmentation
(class, instances),action_classification
,person_layout
) - YOLO (
bboxes
) - TF Detection API (
bboxes
,masks
) - CVAT
List of supported annotation types:
- Labels
- Bounding boxes
- Polygons
- Polylines
- (Key-)Points
- Captions
- Masks
Note: command invocation syntax is subject to change, always refer to command --help output
The key object is the Project. The Project is a combination of
a Project's own dataset, a number of external data sources and an environment.
An empty Project can be created by project create
command,
an existing dataset can be imported with project import
command.
A typical way to obtain projects is to export tasks in CVAT UI.
If you want to interact with models, you need to add them to project first.
This command creates a Project from an existing dataset.
Supported formats are listed in the command help.
In Datumaro dataset formats are supported by Extractors and Importers.
An Extractor produces a list of dataset items corresponding
to the dataset. An Importer creates a Project from the
data source location. It is possible to add a custom Extractor and Importer.
To do this, you need to put an Extractor and Importer implementation scripts to
<project_dir>/.datumaro/extractors
and <project_dir>/.datumaro/importers
.
Usage:
datum project import --help
datum project import \
-i <dataset_path> \
-o <project_dir> \
-f <format>
Example: create a project from COCO-like dataset
datum project import \
-i /home/coco_dir \
-o /home/project_dir \
-f coco
An MS COCO-like dataset should have the following directory structure:
COCO/
├── annotations/
│ ├── instances_val2017.json
│ ├── instances_train2017.json
├── images/
│ ├── val2017
│ ├── train2017
Everything after the last _
is considered a subset name in the COCO format.
The command creates an empty project. Once a Project is created, there are a few options to interact with it.
Usage:
datum project create --help
datum project create \
-o <project_dir>
Example: create an empty project my_dataset
datum project create -o my_dataset/
A Project can be attached to a number of external Data Sources. Each Source
describes a way to produce dataset items. A Project combines dataset items from
all the sources and its own dataset into one composite dataset. You can manage
project sources by commands in the source
command line context.
Datasets come in a wide variety of formats. Each dataset format defines its own data structure and rules on how to interpret the data. For example, the following data structure is used in COCO format:
/dataset/
- /images/<id>.jpg
- /annotations/
In Datumaro dataset formats are supported by Extractors.
An Extractor produces a list of dataset items corresponding
to the dataset. It is possible to add a custom Extractor.
To do this, you need to put an Extractor
definition script to <project_dir>/.datumaro/extractors
.
Usage:
datum source add --help
datum source remove --help
datum source add \
path <path> \
-p <project dir> \
-n <name>
datum source remove \
-p <project dir> \
-n <name>
Example: create a project from a bunch of different annotations and images, and generate TFrecord for TF Detection API for model training
datum project create
# 'default' is the name of the subset below
datum source add path <path/to/coco/instances_default.json> -f coco_instances
datum source add path <path/to/cvat/default.xml> -f cvat
datum source add path <path/to/voc> -f voc_detection
datum source add path <path/to/datumaro/default.json> -f datumaro
datum source add path <path/to/images/dir> -f image_dir
datum project export -f tf_detection_api
This command allows to create a sub-Project from a Project. The new project includes only items satisfying some condition. XPath is used as query format.
There are several filtering modes available ('-m/--mode' parameter). Supported modes:
- 'i', 'items'
- 'a', 'annotations'
- 'i+a', 'a+i', 'items+annotations', 'annotations+items'
When filtering annotations, use the 'items+annotations' mode to point that annotation-less dataset items should be removed. To select an annotation, write an XPath that returns 'annotation' elements (see examples).
Usage:
datum project extract --help
datum project extract \
-p <project dir> \
-o <output dir> \
-e '<xpath filter expression>'
Example: extract a dataset with only images which width < height
datum project extract \
-p test_project \
-o test_project-extract \
-e '/item[image/width < image/height]'
Example: extract a dataset with only large annotations of class cat
and any non-persons
datum project extract \
-p test_project \
-o test_project-extract \
--mode annotations -e '/item/annotation[(label="cat" and area > 999.5) or label!="person"]'
Example: extract a dataset with only occluded annotations, remove empty images
datum project extract \
-p test_project \
-o test_project-extract \
-m i+a -e '/item/annotation[occluded="True"]'
Item representations are available with --dry-run
parameter:
<item>
<id>290768</id>
<subset>minival2014</subset>
<image>
<width>612</width>
<height>612</height>
<depth>3</depth>
</image>
<annotation>
<id>80154</id>
<type>bbox</type>
<label_id>39</label_id>
<x>264.59</x>
<y>150.25</y>
<w>11.199999999999989</w>
<h>42.31</h>
<area>473.87199999999956</area>
</annotation>
<annotation>
<id>669839</id>
<type>bbox</type>
<label_id>41</label_id>
<x>163.58</x>
<y>191.75</y>
<w>76.98999999999998</w>
<h>73.63</h>
<area>5668.773699999998</area>
</annotation>
...
</item>
This command combines multiple Projects into one.
Usage:
datum project merge --help
datum project merge \
-p <project dir> \
-o <output dir> \
<other project dir>
Example: update annotations in the first_project
with annotations
from the second_project
and save the result as merged_project
datum project merge \
-p first_project \
-o merged_project \
second_project
This command exports a Project in some format.
Supported formats are listed in the command help. In Datumaro dataset formats are supported by Converters. A Converter produces a dataset of a specific format from dataset items. It is possible to add a custom Converter. To do this, you need to put a Converter definition script to <project_dir>/.datumaro/converters.
Usage:
datum project export --help
datum project export \
-p <project dir> \
-o <output dir> \
-f <format> \
[-- <additional format parameters>]
Example: save project as VOC-like dataset, include images
datum project export \
-p test_project \
-o test_project-export \
-f voc \
-- --save-images
This command outputs project status information.
Usage:
datum project info --help
datum project info \
-p <project dir>
Example:
datum project info -p /test_project
Project:
name: test_project2
location: /test_project
Sources:
source 'instances_minival2014':
format: coco_instances
url: /coco_like/annotations/instances_minival2014.json
Dataset:
length: 5000
categories: label
label:
count: 80
labels: person, bicycle, car, motorcycle (and 76 more)
subsets: minival2014
subset 'minival2014':
length: 5000
categories: label
label:
count: 80
labels: person, bicycle, car, motorcycle (and 76 more)
Supported models:
- OpenVINO
- Custom models via custom
launchers
Usage:
datum model add --help
Example: register an OpenVINO model
A model consists of a graph description and weights. There is also a script used to convert model outputs to internal data structures.
datum project create
datum model add \
-n <model_name> openvino \
-d <path_to_xml> -w <path_to_bin> -i <path_to_interpretation_script>
Interpretation script for an OpenVINO detection model (convert.py
):
from datumaro.components.extractor import *
max_det = 10
conf_thresh = 0.1
def process_outputs(inputs, outputs):
# inputs = model input, array or images, shape = (N, C, H, W)
# outputs = model output, shape = (N, 1, K, 7)
# results = conversion result, [ [ Annotation, ... ], ... ]
results = []
for input, output in zip(inputs, outputs):
input_height, input_width = input.shape[:2]
detections = output[0]
image_results = []
for i, det in enumerate(detections):
label = int(det[1])
conf = det[2]
if conf <= conf_thresh:
continue
x = max(int(det[3] * input_width), 0)
y = max(int(det[4] * input_height), 0)
w = min(int(det[5] * input_width - x), input_width)
h = min(int(det[6] * input_height - y), input_height)
image_results.append(Bbox(x, y, w, h,
label=label, attributes={'score': conf} ))
results.append(image_results[:max_det])
return results
def get_categories():
# Optionally, provide output categories - label map etc.
# Example:
label_categories = LabelCategories()
label_categories.add('person')
label_categories.add('car')
return { AnnotationType.label: label_categories }
This command applies model to dataset images and produces a new project.
Usage:
datum model run --help
datum model run \
-p <project dir> \
-m <model_name> \
-o <save_dir>
Example: launch inference on a dataset
datum project import <...>
datum model add mymodel <...>
datum model run -m mymodel -o inference
The command compares two datasets and saves the results in the specified directory. The current project is considered to be "ground truth".
datum project diff --help
datum project diff <other_project_dir> -o <save_dir>
Example: compare a dataset with model inference
datum project import <...>
datum model add mymodel <...>
datum project transform <...> -o inference
datum project diff inference -o diff
Usage:
datum explain --help
datum explain \
-m <model_name> \
-o <save_dir> \
-t <target> \
<method> \
<method_params>
Example: run inference explanation on a single image with visualization
datum project create <...>
datum model add mymodel <...>
datum explain \
-m mymodel \
-t 'image.png' \
rise \
-s 1000 --progressive