forked from MathHubInfo/ISFA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexception.txt
374 lines (374 loc) · 48 KB
/
exception.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
A000464 a(n)=(-1)^n*L(X,-2n+1) where L(X,z) is the Dirichlet L-function L(X,z)=sum(k=1,infty,X(k)/k^z) and where X(k) is the Dirichlet character Legendre(k,2) which begins 1,0,-1,0,-1,0,1,0,1,0,-1,0,-1,0,1,0,1,0,-1,0.... - _Benoit Cloitre_, Mar 22 2009
A002061 a(n) = Det[Transpose[{{-1, 1}, {0, -1}}] - n {{-1, 1}, {0, -1}}]. - _Artur Jasinski_, Mar 31 2008
A002083 a(n)=sum(K(n-k+1, k)*a(n - k),k=1..n), where K(n,k) = 1 if 0 <= k AND k <= n and K(n,k)=0 else. (Several arguments to the K-coefficient K(n,k) can lead to the same sequence. For example, we get A002083 also from a(n)=sum(K((n - k)!,k!)*a(n - k),k=1..n), where K(n,k) = 1 if 0 <= k <= n and 0 else. See also the comment to a similar formula for A002487.) - _Thomas Wieder_, Jan 13 2008
A002143 h(-p) = 1 + 2*sum(0 <= n <= (1/2)*sqrt(p/3)-1, d(n^2+n+(p+1)/4, [2*n+1, sqrt(n^2+n+(p+1)/4)])) for prime p=3 mod 4, p>3. d(n, [a, b])=card{d: d|n and a<d<b} for integer n and real a, b. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 19 2002
A003130 a(n) = A003128(n) + 2 * A003129(n) + U(n) where U(n) = sum(u(n) * Stirling2(n, k), k=2..n) and u(n) = (20(n)_4 + 10(n)_5 + (n)_6) / 8 where (n)_k = n * (n - 1) * ... * (n - k + 1) denotes the falling factorial. - _Sean A. Irvine_, Feb 03 2015
A003707 a(n) = sum((-1)^(k+1)evenp(n+k), k=1,n, (-1)^((n+k)/2)/k*sum(j=k,n, j!/n!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1)), n>0 [_Vladimir Kruchinin_, Aug 18 2010]
A005814 Linear differential equation satisfied by F(t)=Sum a(n) t^n/(2n)!: {F(0) = 1, - 3*t*(10*t^2 + 9*t^6 + 18*t^4 - 8 + t^10 - 6*t^8)*( - 2 - 2*t^2 + t^4)*(diff(F(t), t)) + 9*t^4*( - 2 - 2*t^2 + t^4)^2*(diff(F(t), `$`(t, 2))) + t^2*( - 2 - 2*t^2 + t^4)*(24*t^6 - 10*t^8 - 4*t^4 - 44*t^2 + t^10 - 48)*F(t)}. - _Marni Mishna_, Jun 17 2005 [Probably this defines A005814? - _N. J. A. Sloane_]
A007953 a(0) = 0, a(10n+i) = a(n) + i 0 <= i <= 9; a(n) = n - 9*(sum(k > 0, floor(n/10^k)) = n - 9*A054899(n). - _Benoit Cloitre_, Dec 19 2002
A008277 With P(n) = the number of integer partitions of n, p(i) = the number of parts of the i-th partition of n, d(i) = the number of different parts of the i-th partition of n, p(j, i) = the j-th part of the i-th partition of n, m(i, j) = multiplicity of the j-th part of the i-th partition of n, sum_[p(i)=m]_{i=1}^{P(n)} = sum running from i=1 to i=p(n) but taking only partitions with p(i)=m parts into account, prod_{j=1}^{p(i)} = product running from j=1 to j=p(i), prod_{j=1}^{d(i)} = product running from j=1 to j=d(i) one has S2(n, m) = sum_[p(i)=m]_{i=1}^{P(n)} (n!/prod_{j=1}^{p(i)} p(i, j)!) (1/prod_{j=1}^{d(i)} m(i, j)!). For example, S2(6, 3) = 90 because n=6 has the following partitions with m=3 parts: (114), (123), (222). Their complexions are: (114): (6!/1!*1!*4!)*(1/2!*1!) = 15, (123): (6!/1!*2!*3!)*(1/1!*1!*1!) = 60, (222): (6!/2!*2!*2!)*(1/3!) = 15. The sum of the complexions is 15+60+15=90=S2(6, 3). - _Thomas Wieder_, Jun 02 2005
A008297 If L_n(y)=Sum_{k=0..n} |a(n, k)|*y^k (a Lah polynomial) then e.g.f. for L_n(y) is exp(x*y/(1-x)) - _Vladeta Jovovic_, Jan 06 2001
A008307 T(n+1, k) = Sum_{d|k} (n)_{d-1}*T(n-d+1, k), where (n)_i = n*(n-1)*(n-2)*...*(n-i+1).
A013643 The general form of these numbers is d = d(m, n) = a^2 + 4mn + 1, where m and n are positive integers and a = a(m, n) = (4m^2 + 1)n + m, for which the continued fraction expansion of sqrt(d) is [a;[2m, 2m, 2a]]. - _David Terr_, Jul 20 2004
A015716 G.f.: G=G(t,x)=product(1+x^j, j=1..infinity)*sum(t^i*x^i/(1+x^i), i=1..infinity). - _Emeric Deutsch_, Mar 29 2006
A028412 T(n, m) = Sum[i_1>=0, Sum[i_2>=0, ... Sum[i_m>=0, C(n-i_m, i_1)*C(n-i_1, i_2)*C(n-i_2, i_3)*...*C(n-i_{m-1}, i_m) ] ... ]].
A030981 Sum((-1)^(n-k)*2^(n-k)*binomial(n, k)*binomial(3*k, k-1), k=1..n)/n; G.f. satisfies z A^3 + 3 z A^2 + z A - A + z = 0
A033282 G.f. G=G(t, z) satisfies (1+t)G^2 - z(1-z-2tz)G + tz^4 = 0.
A036355 T(n, m)=T'(n-1, m-1)+T'(n-2, m-2)+T'(n-1, m)+T'(n-2, m), where T'(n, m)=T(n, m) if 0<=m<=n and n >= 0 and T'(n, m)=0 otherwise. Initial term T(0, 0)=1.
A037027 T(n, m) = T'(n-1, m)+T'(n-2, m)+T'(n-1, m-1), where T'(n, m) = T(n, m) for n >= 0 and 0< = m< = n and T'(n, m) = 0 otherwise.
A037093 a(n) := Sum(bit_n(A000045(n+i), i)*(2^i), i=0..inf) [ bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2); ]
A037094 a(n) := Sum(bit_n(A000032(n+i), i)*(2^i), i=0..inf) [ bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2); ]
A037095 a(n) := Sum(bit_n(A000244(n-i), i)*(2^i), i=0..(n-1)) [ bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2); ]
A039699 1, 0, 8, 0, 168, 0, 5120... has e.g.f.=BesselI[ 0, 2x ]^4 (BesselI=modified Bessel function of first kind).
A049397 a(n) = (25^n*(9/5)_n)/n!, where the rising factorial (c)_n = Gamma(c+n)/Gamma(c). - _Todd Silvestri_, Dec 17 2014. See the a(n) formula above.
A053737 a(0)=0, a(4n+i)=a(n)+i 0<=i<=3; a(n)=n-3*(sum(k>0, floor(n/4^k))=n-3*A054893(n). - _Benoit Cloitre_, Dec 19 2002
A053824 a(0)=0, a(5n+i)=a(n)+i 0<=i<=4; a(n)=n-4*(sum(k>0, floor(n/5^k))=n-4*A027868(n). - _Benoit Cloitre_, Dec 19 2002
A053827 a(0)=0, a(6n+i)=a(n)+i 0<=i<=5; a(n)=n-5*(sum(k>0, floor(n/6^k))=n-5*A054895(n). - _Benoit Cloitre_, Dec 19 2002
A053828 a(0)=0, a(7n+i)=a(n)+i 0<=i<=6; a(n)=n-6*(sum(k>0, floor(n/7^k))=n-6*A054896(n). - _Benoit Cloitre_, Dec 19 2002
A053829 a(0)=0, a(8n+i)=a(n)+i 0<=i<=7; a(n)=n-7*(sum(k>0, floor(n/8^k))=n-7*A054897(n). - _Benoit Cloitre_, Dec 19 2002
A053830 a(0)=0, a(9n+i)=a(n)+i 0<=i<=8; a(n)=n-8*(sum(k>0, floor(n/9^k))=n-8*A054898(n). - _Benoit Cloitre_, Dec 19 2002
A053831 a(0)=0, then a(11n+i)=a(n)+i 0<=i<=10; a(n)=n-(m-1)*(sum(k>0, floor(n/m^k))=n-(m-1)*A064458 (n). - _Benoit Cloitre_, Dec 19 2002
A053832 a(0)=0, a(12n+i)=a(n)+i 0<=i<=11; a(n)=n-11*(sum(k>0, floor(n/12^k))=n-11*A064459(n). - _Benoit Cloitre_, Dec 19 2002
A053833 a(0)=0, a(13n+i)=a(n)+i 0<=i<=12; a(n)=n-12*(sum(k>0, floor(n/13^k)). - _Benoit Cloitre_, Dec 19 2002
A053834 a(0)=0, a(14n+i)=a(n)+i 0<=i<=13; a(n)=n-13*(sum(k>0, floor(n/14^k)). - _Benoit Cloitre_, Dec 19 2002
A053835 a(0)=0, a(15n+i)=a(n)+i 0<=i<=14; a(n)=n-14*(sum(k>0, floor(n/15^k)). - _Benoit Cloitre_, Dec 19 2002
A053836 a(0)=0, a(16*n+i)=a(n)+i 0<=i<=15; a(n)=n-15*(sum(k>0, floor(n/16^k)). - _Benoit Cloitre_, Dec 19 2002
A058183 a(n) ~ n log_10 n + O(n). In particular lim inf (n log_10 n - a(n))/n = (1+log(10/9)+log(log(10)))/log(10) and the corresponding lim sup is 10/9. - _Charles R Greathouse IV_, Sep 19 2012
A059081 a(n) = (1/5!)*([32]_n - 20*[24]_n + 60*[20]_n + 20*[18]_n + 10*[17]_n - 110*[16]_n - 120*[15]_n + 150*[14]_n + 120*[13]_n - 240*[12]_n + 20*[11]_n + 240*[10]_n + 40*[9]_n - 205*[8]_n + 60*[7]_n - 210*[6]_n + 210*[5]_n + 50*[4]_n - 100*[3]_n + 24*[2]_n), where [k]_n := k*(k - 1)*...*(k - n + 1), [k]_0 = 1.
A059082 a(n) = (1/6!)*([64]_n - 30*[48]_n + 120*[40]_n + 60*[36]_n + 60*[34]_n - 12*[33]_n - 345*[32]_n - 720*[30]_n + 810*[28]_n + 120*[27]_n + 480*[26]_n + 360*[25]_n - 480*[24]_n - 720*[23]_n - 240*[22]_n - 540*[21]_n + 1380*[20]_n + 750*[19]_n + 60*[18]_n - 210*[17]_n - 1535*[16]_n - 1820*[15]_n + 2250*[14]_n + 1800*[13]_n - 2820*[12]_n + 300*[11]_n + 2040*[10]_n + 340*[9]_n - 1815*[8]_n + 510*[7]_n - 1350*[6]_n + 1350*[5]_n + 274*[4]_n - 548*[3]_n + 120*[2]_n), where [k]_n := k*(k - 1)*...*(k - n + 1), [k]_0 = 1.
A059202 T(n, m) = (1/m!)*Sum_{1..m + 1} stirling1(m + 1, i)*[2^(i - 1) - 1]_n, where [k]_n := k*(k - 1)*...*(k - n + 1), [k]_0 = 1.
A063746 G.f.: Consider a function; f(n) = 1 + sum(i_1=1, n, sum(i_2=0, i_1, ..., sum(i_n=0, i_(n-1), x^(sum(j=1, n, i_j))*(1+...+x^i_n))...)) Then the GF is f(1)+x^3.f(2)+x^8.f(3)+..., where after x^3 the increase is n^2+1 from f(n). - _Jon Perry_, Jul 13 2004
A064881 a(n, m)= a(n-1, m/2) if m is even, else a(n, m)= a(n-1, (m-1)/2)+a(n-1, (m+1)/2, a(1, 0)=1, a(1, 1)=2.
A064882 a(n, m)= a(n-1, m/2) if m is even, else a(n, m)= a(n-1, (m-1)/2)+a(n-1, (m+1)/2, a(1, 0)=2, a(1, 1)=1.
A064883 a(n, m)= a(n-1, m/2) if m is even, else a(n, m)= a(n-1, (m-1)/2)+a(n-1, (m+1)/2, a(1, 0)=1, a(1, 1)=3.
A064884 a(n, m)= a(n-1, m/2) if m is even, else a(n, m)= a(n-1, (m-1)/2)+a(n-1, (m+1)/2, a(1, 0)=3, a(1, 1)=1.
A064885 a(n, m)= a(n-1, m/2) if m is even, else a(n, m)= a(n-1, (m-1)/2)+a(n-1, (m+1)/2, a(1, 0)=3, a(1, 1)=2.
A064886 a(n, m)= a(n-1, m/2) if m is even, else a(n, m)= a(n-1, (m-1)/2)+a(n-1, (m+1)/2, a(1, 0)=2, a(1, 1)=3.
A065109 Sum_{k 0<=k<=n} T(n,k)*x^k = (2-x)^n. [_Philippe Deléham_, Dec 15 2009]
A066087 A009223(n)-A066086(n)= GCD(sigma(n), phi(n))-GCD[sigma(A007947(n)), phi(A007947(n))).
A068218 T(k, r) = 2*(2k-3)/(k-2r) * ( T(k-1, r) - T(k-1, r-1) ), for k > 2r. T(1, 0)=2, T(1, 1)=2 Sum[T(k, r), r=0, ..., k] = A054474(k) T(k, r)=A069466(k, r) - Sum[ Sum[ T(i, j)*A069466(k-i, r-j), j=0...r], i=1, k-1]
A069548 Primes of the form 3*sigma(n) + sum_{d|k, d squarefree} d(6/(2 + mu(d)) - 3) for some k. [_Charles R Greathouse IV_, Feb 18 2011]
A072183 For odd n: log(a(n))=Sum(d|n)mu(n/d)*log(L(d)). For even n:log(a(n))=Sum(d|n, d even)mu(n/d)*log(F(d))+Sum(d|n, d odd)mu(n/d)*log(L(d))
A080277 n log_2 n - 2n < a(n) <= n log_2 n + n [Bannister et al., 2013] - _David Eppstein_, Aug 31 2013
A081285 f_n(q) = sum_r=1..n (-1)^(r+1) q^(r(r-1)/2) (q)_(n-1) (q)_n / ((q)_(r) ((q)_(n-r))^2) f_(n-r)(q) for n>=1.
A086836 a(n) = 1/8*([9]_n+4*[3]_n+3*[1]_n) = 3/8*(967680-1145424*n+705596*n^2-256796*n^3+59649*n^4-8936*n^5+834*n^6-44*n^7+n^8)/GAMMA(10-n), where [m]_n=m*(m-1)*...*(m-n+1) is falling factorial. - _Vladeta Jovovic_, Aug 10 2003
A087074 T(n, k) = 1/8*([n^2]_k+2*[n]_k+5*[0]_k) if n is even and 1/8*([n^2]_k+4*[n]_k+3*[1]_k) if n is odd, where [m]_k=m*(m-1)*...*(m-k+1), k>0, [m]_0=1, is falling factorial. - _Vladeta Jovovic_, Aug 10 2003
A088538 arcsin x = (4/Pi) sum_{n = 1, 3, 5, 7, ...} T_n(x)/n^2 (Chebyshev series of arcsin; App C of math.CA/0403344). - _R. J. Mathar_, Jun 26 2006
A090981 T(n, k)=binomial(n+1, k)*sum(binomial(n+1, j)*binomial(n-j-1, k-1), j=0..n-k)/(n+1). G.f. G=G(t, z) satisfies z(1-z+tz)G^2-(1-tz)G+1=0.
A090985 T(n, k)=binomial(n+k-2, k)*sum(binomial(n-2+k+i, i)*binomial(n-3-k-i, i-1), i=0..floor((n-2-k)/2))/(n-1). G.f. G=G(t, z) satisfies (1-t)G^3+(1+t)zG^2-z^2*(1+z)G+z^4=0.
A091187 G.f.: G=G(t,z) satisfies t*z*G^2-(1 - z + t*z)*G + 1- z + t*z = 0.
A091602 G.f.: G = G(t,x) = sum(k>=1, t^k*(prod(j>=1, (1-x^((k+1)*j))/(1-x^j) ) -prod(j>=1, (1-x^(k*j))/(1-x^j) ) ) ). - _Emeric Deutsch_, Mar 30 2006
A091866 G.f. = G = G(t, z) satisfies z(1-tz)G^2-(1+z-2tz)G+1-tz = 0.
A091867 T(n, k) = [binomial(n+1, k)/(n+1)]*sum(binomial(n+1-k, j)*binomial(n-k-j-1, j-1), j=1..floor((n-k)/2)) for k<n; T(n, n)=1; T(n, k)=0 for k>n. G.f.=G=G(t, z) satisfies z(1+z-tz)G^2-(1+z-tz)G+1=0. T(n, k)=r(n-k)*binomial(n, k), where r(n)=A005043(n) are the Riordan numbers.
A091869 T(n, k)=binomial(n-1, k)*sum(binomial(n-k, j)*binomial(n-k-j, j-1), j=0..ceil((n-k)/2))/(n-k) for 0<=k<n; T(n, k)=0 for k>=n. G.f.=G=G(t, z) satisfies zG^2-(1+z-tz)G+1+z-tz=0. T(n, k)=M(n-k-1)*binomial(n-1, k), where M(n)=A001006(n) are the Motzkin numbers.
A091894 G.f.: G = G(t,z) satisfies: t*z*G^2-(1-2*z+2*t*z)*G+1-z+t*z = 0.
A091958 T(n,k) = binomial((n+1), k)*sum((-1)^j*binomial(n+1-k,j)*binomial(2n-3k-3j, n), j=0..floor(n/3)-k)/(n+1). G.f.: G=G(t,z) satisfies (t-1)z^3 G^3 + zG^2 - G + 1 = 0.
A091977 G.f.=G=G(t, z) satisfies tz(1-z)G^2-(1+tz-2z)G+1-z=0.
A093127 G.f.: G=G(t,z) satisfies t*z^4*G^2 - (1 - z - 2*t*z^2 - t*z^3 + t^2*z^4)*G + 1 = 0. - _Emeric Deutsch_, Sep 18 2014
A094021 T(n, k)=binomial(n, k-1)*binomial(3n-2k-1, n-k)/(2n-k). G.f. G=G(t, z) satisfies G^3+(t^3*z^2-t^2*z-3)G^2+(t^2*z+3)G-1=0.
A094046 T(n, k)=binomial(n+k-2, k)*sum(binomial(n+k+i-2, i)*binomial(4n-4-k-i, n-2k-2-3i), i=0..floor((n-2k-2)/3))/(n-1). G.f.=G=G(t, z) satisfies G=z(1+G)^5/(1+G-G^3-tG^2).
A094322 G.f.=G=G(t, z)=(1-z)/(1-zC+z^2*C -tz), where C=[1-sqrt(1-4z)]/(2z) is the Catalan function.
A094449 G.f.=G=G(t, z)= (1-tz)(1-z)/[1-2tz+tz^2-z(1-z)(1-t*z)C), where C=[1-sqrt(1-4z)]/(2z) is the Catalan function.
A094507 G.f.: G=G(t, z) satisfies the equation z(1+z-tz)G^2-(1+z+z^2-tz-tz^2)G+1+z-tz=0.
A096441 G.f.: F + G - 2, where F = prod(j>=1, 1/(1-q^(2*j) ), G = prod(j>=0, 1/(1-q^(2*j+1)) ).
A096793 G.f. G=G(t,z) satisfies G = 1 + zG(t + zG)/(1 - z^2*G^2).
A096793 The trivariate g.f. H=H(t,s,z), where t (s) marks odd-length (even-length) ascents satisfies H = 1 + zH(t+szH)/(1-z^2*H^2). (End)
A097100 G.f.=G=G(t, z) satisfies G=1+zG+z^2*G*[z+(1-z+t*z)^2*(G-zG-1)]/(1-z).
A097107 G.f.=G=G(t, z) satisfies G=1+zG+z^2*(G-1)[(1-z)G+z(1-t)/(1-z)]/(1-tz).
A097777 G.f. = G = G(t, z) satisfies G=1+zG+z^2*G[G-1-(1-t)[zG-z/(1-z)]].
A097777 The generating function H=H(t,z) relative to the number of subwords of the form UH^bU for a fixed b>=1 satisfies H = 1+zH+z^2*H[H-1+(t-1)z^b*(H-1-zH)].
A097860 G.f. G = G(t, z) satisfies G = 1+z*G+z^2*G*(G-1+t).
A097885 G.f. G=G(t, z) satisfies z^2*(t+z-tz)G^2-(1-z-z^2+tz^2)*G+1=0.
A097887 G.f.=G=G(t, z) satisfies z^2*(2-4z+3z^2-t+2tz-3tz^2+t^2*z^2)G^2-(1-z)(1-2z+3z^2-2tz^2)G+(1-z)^2=0.
A097888 G.f.=G=G(t, z) satisfies tz^2*(1-z)G^2-(1-2*z+tz^2)*G+1-z=0.
A097891 G.f.=G=G(t, z) satisfies z^2*(1-z+z^2-tz^2)G^2-(1-z)(1-z+z^2-tz^2)G+1-z=0.
A097892 G.f.=G=G(t, z) satisfies z^2*(1-z)G^2-(1-z)(1-z+z^2-tz^2)G+1-z+z^2-tz^2=0.
A098050 G.f.=G=G(t, z) satisfies G=1+zG+z^2*G[G-1-z/(1-z)+tz/(1-tz)].
A098056 G.f.=G=G(t, z) satisfies G = 1 + zG + z^2*[H + 2tzH/(1-z)+t^2*z^2*H/(1-z)^2+ z/(1-z)][G-(1-t)zH/(1-z)^2], where H=(1-z)^2*G-1+z.
A098063 G.f.=G=G(t, z) satisfies z(t-tz+tz^2-1+2z-z^2)G^2-(1-2z+z^2+tz)G+1=0.
A098071 G.f.=G=G(t, z) satisfies aG^2 + bG + c = 0, where a=z^2*(1-z-z^2+2z^3-tz+2tz^2-2tz^3-tz^4+t^2z^4), b=-(1-z)(1-2z+2z^2+z^3-2tz^3), c=(1-z)^2.
A098073 G.f.=G=G(t, z) satisfies aG^2 + bG + c = 0, where a=z^2*(1-2z+z^2-z^3+tz-tz^2+tz^3), b=-(1-2z+2z^2-2z^3+tz^3), c=1-z.
A098083 G.f.=G=G(t, z) satisfies G=1+zG+z^2*(G-1)[G-(1-t)z(G-zG-1)/(1-z)].
A098093 G.f.=G=G(t, z) satisfies G=1+zG+tz^2*G(G-1)/(1-z^2+tz^2).
A098832 Item m of row n of T is given (in infix form) by: n T m = n * (n + m) / (1 + m (mod 2)). E.g. Item 4 of row 3 of T: 3 T 4 = 14.
A100754 G.f.: t*z*r/(1-t*z*r), where r = r(t,z) is the Narayana function defined by r=z*(1+r)*(1+t*r).
A101276 G.f. G=G(t, z) satisfies z(t+z-tz)G^2-(1-z+tz+z^2-tz^2)G+1-z+tz+z^2-tz^2=0.
A101282 G.f.=G=G(t, z) satisfies z(t+z-tz)G^2-(1-2z+tz)G+1=0.
A101307 G.f.=G=G(t, z) satisfies G=1+P+PG(G-1), where P= z/(1-z)+(t-1)z^2 (for the explicit form see the Maple program).
A101431 T(n, k)=(1/n)binomial(n, k)*sum(3^(n-1-k-2i)*binomial(k, i)binomial(n-k, k+i+1), i=0..min(k, n-1-2k)) (0<=k<=ceil(n/2)-1). G.f.=G=G(t, z) satisfies tzG^3-(1+3tz-3z)G+1+2tz-2z=0.
A101646 n x k = n k - [(k+1)/phi^2] [(n+1)/phi^2] . For proof see link. - W. F. Lunnon, May 24 2008
A101894 G.f.=G=G(t, z) satisfies z(1-tz)G^2-(1-z)(1-tz)G+1-z=0.
A101895 G.f.=G=G(t, z) satisfies z(1-z)G^2-(1-z)(1-tz)G+1-tz=0.
A101919 G.f.=G=G(t, z) satisfies z(1-z)G^2-(1-z-tz+z^2)G+1-z=0.
A101920 G.f.=G=G(t, z) satisfies tz(1-z)G^2-(1-3z+tz+z^2)G+1-z=0.
A102003 G.f.=G=G(t, z) satisfies z(t+z)G^2-(1+tz)G+1+tz=0.
A102004 G.f.=G=G(t, z) satisfies z(1+tz)G^2-(1+z-z^2+tz^2)G+1+z-z^2+tz^2=0
A102402 G.f.: G=G(t,z) satisfies z^3*(1-t)G^3+z(1-z+tz)G^2-G+1=0.
A102404 G.f.=G=G(t, z) satisfies z(1+z-tz)^2*G^2-(1+z+z^2-tz-tz^2)G+1=0.
A102405 G.f.: G=G(t, z) satisfies zG^2-(1+z-z^2-tz+tz^2)G+1+z-tz=0.
A103323 T(n, k) = Sum[i_1>=0, Sum[i_2>=0, ... Sum[i_{k-1}>=0, C(n, i_1)*C(n-i_1, i_2)*C(n-i_2, i_3)*...*C(n-i_{k-2}, i_{k-1}) ] ... ]].
A103324 T(n, k) = Sum[i_1>=0, Sum[i_2>=0, ... Sum[i_{k-1}>=0, 2^i_1*C(n, i_1)*C(n-i_1, i_2)*C(n-i_2, i_3)*...*C(n-i_{k-2}, i_{k-1}) ] ... ]].
A104461 Consider pythagorean triples x^2+y^2=z^2. We seek to find the total number of instances of an integer m being x or y or z. The solution for x or y is straightforward by considering appropriate lesser and greater pairwise factors, L, G of m^2 in z^2 - y^2 = (z-y)(z+y) = m^2. Then solve for z and y with the relations, z-y = L z+y = G 2z = L+G, z = (L+G)/2 where L and G are both even if m is even or both odd if m is odd. The number of L factors < m is the number of instances of x or y. The count of instances z=m is solved by trial on x^2 = m^2 - y^2.
A104544 G.f.=G=G(t, z) satisfies z^2(1+z-tz)G^2-(1-tz)G+1+z-tz=0.
A104546 G.f.: G = G(t,z) satisfies G=1+zG+zG[G+(t-1)z/(1-z)].
A104552 G.f.=G=G(t, z) satisfies zG^2-[1-z+z(1-t)/((1-z)(1-tz))]G+1=0.
A104573 G.f.=G=G(t, z) satisfies G=1+zG+z^2[G-(1-t)/((1-z)(1-tz^2))]G.
A104580 T(n, m) = T'(n-1, m-1)+T'(n-1, m)+T'(n-2, m)+T'(n-3,m), where T'(n, m) = T(n, m)
A105156 a(n) = if 10 Mod[Prime[n], 10] is 1, 3 then -Prime[n] else Prime[n] a[1]=5 a[3]-2 T(n, k)=a(k)*Prime[n] aout[n]=Sum[T(n, k], {k, 1, n]
A105162 a(n) = if 10 Mod[Prime[n], 10] is 1 then -Prime[n]-6 if 3 then -Prime[n]-2 else if 7 then Prime[n]-2, if 9 then Prime[n]-6 a[1]=-5 a[3]=2 T(n, k)=a(k)*Prime[n]*(-1)^k aout[n]=Sum[T(n, k], {k, 1, n]
A105640 G.f.=G-1, where G =G(t,z) satisfies z(2+z+z^2-tz^2)G^2-(1+2z+z^2-tz^2)G+1=0.
A107131 G.f. G=G(t, z) satisfies G=1+tzG+tz^2*G^2. - _Emeric Deutsch_, May 29 2005
A107230 G.f.=G=G(t,z) satisfies z(1-2z-tz)G^2+(1-2z-tz)G-1=0. - _Emeric Deutsch_, Oct 07 2007
A108198 G.f.: G-1, where G=G(t,z) satisfies G=1+tzG^2+z(G-1).
A108263 G.f. G=G(t, z) satisfies z*(1+t*z)*G^2 - (1+z)*G + 1 = 0.
A108425 T(n, k)=(1/n)binomial(n, k)*sum(2^(n-j)*binomial(n, j)*binomial(n, k-1-j), j=0..k-1). G.f. =G=G(t, z) satisfies zG^3+tzG^2-(1+z-tz)G+1=0.
A108426 T(n, k)=(1/n)binomial(n, k)*binomial(3n-k, n-1). G.f. =G=G(t, z) satisfies G=1+z(t+G)G^2.
A108428 T(n, k)=(1/n)sum(binomial(n, j)binomial(n, k-j)binomial(n+j, k+1), j=0..k). G.f.=G=G(t, z) satisfies t^2*zG^3-t^2*zG^2-(1+z-tz)G+1=0.
A108429 T(n, k)=binomial(n, 2n-k)binomial(n+k, n-1)/n; G.f.=G=G(t, z) satisfies G=1+tzG^2*(1+tG).
A108437 G.f.=G=G(t, z)=1/(1-tzA-t^2*zA^2)-1, where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
A108438 G.f.=G=G(t, z)=1/(1-t^2zA-tzA^2)-1, where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
A108440 G.f.=G=G(t, z)=1/(1-tzA-zA^2)-1, where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
A108441 G.f.=G=G(t, z)=1/(1-zA-tzA^2)-1, where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
A108443 G.f.=G=G(t, z) satisfies G=1+z(t+z-tz)^2*G^3+z(2-t)(t+z-tz)G^2+2z(1-t)G.
A108446 T(n, k)=(1/n)binomial(n, k)*sum(binomial(n-k, j)*binomial(n+2j, k+j-1), j=0..n-k). G.f.=G=G(t, z) satisfies G=1+z(G-1+t)G+zG^3.
A108746 G.f.=G=G(t, z) satisfies G=1+zG(G-1+t-tz+z).
A108767 G.f.: T-1, where T=T(t, z) satisfies T=1+z*T^2*(T-1+t).
A108838 G.f.=1+z(1+r)^2, where r=r(t,z) is the Narayana function defined by (1+r)(1+tr)z=r, r(t,0)=0. - _Emeric Deutsch_, Jul 23 2006
A108838 The trivariate g.f. G=G(t,s,z) of Dyck paths with respect to number of DUU's (marked by t), number of DDU's (marked by s) and semilength (marked by z) satisfies G=1+zG+z^2*[1+t(G-1)][1+s(G-1)]/[1-z(1+ts(G-1))] (the number of long interior inclines is equal to the number of DUU and DDU's). - _Emeric Deutsch_, Oct 09 2008
A109089 a in (a, b) = lim(n->infinity)A^n(1, 1) with A(x, y) = (x+y/x, y/x).
A109090 a in (a, b) = lim(n->infinity)A^n(1, 1) with A(x, y) = (x+y/x, y/x).
A110235 T(n, k)=[2/(n+k)]binomial((n+k)/2, k)*binomial((n+k)/2, k-1). G.f.=g=g(t, z) satisfies g=1+tzg+z^2*g(g-1).
A112412 G.f. is the diagonal of g(t, s, z), where g=g(t, s, z) is defined by z(1+tz-tsz)(1+sz-tsz)g^2 - [1+(1-ts)z-(1-t)(1-s)z^2]g+1=0 (g is the trivariate g.f. of Dyck paths, where z marks semilength and t (s) marks number of ascents (descents) of length 1.
A113869 Furthermore, P_k ~ 1 - Sum_{n >= 1} A003319(n)/[k]_n, where [k]_n = k(k-1)(k-2)...(k-n+1). Therefore for n >= 2, a(n) = - Sum_{i=1..n} A003319(i)*Stirling_2(n-1, i-1). - _N. J. A. Sloane_.
A114117 T(n, k)=sum{j=0..n, sum{i=0..n, C(floor((n+i)/2, j)C(j, floor((n+i)/2))}*(2*C(0, j-k)-C(1, j-k))}}.
A114463 G.f.: G=G(t, z) satisfies z[(1-t)z^2-(1-t)z+1]G^2-[1-(1-t)z^2]G+1=0.
A114486 G.f. G=G(t, z) satisfies G=1+z(C-z+tz)G, where C=[1-sqrt(1-4z)]/(2z) is the Catalan function. G=2/[1+2z^2-2tz^2+sqrt(1-4z)].
A114492 G.f. G=G(t, z) satisfies z(t+z-tz)G^2-(1-2(1-t)z+(1-t)z^2)G+1-z+tz=0.
A114502 G.f.: G=G(t, z) satisfies z(1-z)G^2-(1-z-z^2+tz^2)G+1-2z+tz=0.
A114506 G.f. G=G(t, z) satisfies (1-t)z^4*G^4-(1-t)z^3*G^3+zG^2-G+1=0.
A114508 G.f. G=G(t, z) satisfies (1-t)z^5*G^5-(1-t)z^4*G^4+zG^2-G+1=0.
A114516 G.f.: G=G(t, z) satisfies z*(1+t*z-z*t^2*z)^2*G^2-(1+z-z^2-t^2*z+2*t*z^2-t^2*z^2)*G+ 1=0.
A114583 G.f.=G=G(t, z) satisfies G=1+zG+z^2*G(tz-z+G).
A114586 G.f.=G-1, where G=G(t, z) satisfies z(1+t+z)G^2-(1+z+tz)G+1=0.
A114588 G.f.: G-1, where G = G(t,z) satisfies z(2+2z+z^2-tz-tz^2)G^2+(1+2z)(1+z-tz)G+1+z-tz=0.
A114593 T(n, k)=2^(n-2k)*binomial(n+1, k)binomial(n-k-1, k-1)/(n+1) (1<=k<=floor(n/2)). G.f.=G-1, where G=G(t, z) satisfies z(2+tz)G^2-(1+2z)G+1=0.
A114597 G.f.= G-1, where G=G(t, z) satisfies z(1+t-t^2*z-t^3*z^2)G^2-(1+z-2t^2*z^2)G+1-tz=0.
A114608 T(n, k)=(1/n)binomial(n, k)*sum(2^j*binomial(n, j+1)binomial(n-k, j), j=0..n-k) (k<=n-1); T(n, n)=1. G.f.=G=G(t, z) satisfies G=1+z(G-1+t)G+zG^2.
A114655 T(n, k)=2^(n-k+1)*binomial(n, k)*binomial(n, k-1)/n (1<=k<=n). G.f. G=G(t, z) satisfies G=z(2+G)(t+G).
A114656 T(n, k)=2^(n-k)*binomial(n, k)*binomial(n, k-1)/n. G.f.=G=G(t, z) satisfies G=z(2G+t)(G+1).
A114687 G.f.: G=G(t, z) satisfies G = z*(1+G)*(1+2*t*G).
A114690 G.f. G=G(t, z) satisfies G=z(t+G)(1+z+zG).
A114706 G.f.=G-1, where G=G(t, z) satisfies z(1+t-z+tz)G^2-(1+tz)G+1=0.
A114711 G.f.=G=G(t, z) satisfies G=z(t+G)+z^2*G(1+G).
A114712 G.f.=G=G(t, z) satisfies G=1+zG+z^2*(tzG+G-1-zG)G.
A114848 T(n,k) = Sum((-1)^j * binomial(n-1-(j+k), j+k) * binomial(j + k, k) * A000108(n-2(j+k)), j=0..[(n-1)/2]-k). G.f. G = G(t,z) satisfies G = C(z/(z^2(1-t)+1)), where C(z) is g.f. of Catalan numbers.
A116385 E.g.f.: dif(Bessel_I(3,2x),x)+2*Bessel_I(3,2x); a(n)=C(n+1,floor((n-2)/2)(1+(-1)^n)/2+C(n,floor((n-3)/2))(1-(-1)^n).
A116424 T(n,k) = Sum((-1)^(i+k) * binomial(i,k) * binomial(n-i,i) * binomial(2*n-3*i, n - 2*i -1)/(n-i), i=k..[(n-1)/2]), n >=1. G.f. G = G(t,z) satisfies G = 1 + z^2(1-t)G + z(1-z+tz)G^2.
A116863 a(n,m) are the coefficients of the polynomial C2_n = C2_n(a[1],...,a[n]) in the above mentioned order.
A118357 G.f.: G-1, where G = G(t,z) = [1+(1-t)z]/[1-(2+t)z-2(1-t)z^2]. G.f. of column k is z^(k+1)*(1-2z)^(k-1)/(1-2z-2z^2)^(k+1) (k>=1).
A118920 More generally, the trivariate g.f. G=G(x,y,z), where x (y) marks number of downward (upward) crossings of the x-axis, is given by G = z*C^2*(2+(x+y)*z*C^2)/(1-x*y*z^2*C^4).
A118963 T(n,k)=[(n+1)/n]binomial(n,k)binomial(n,k+1). G.f.=G(t,z)=(1+r)^2/(1-tr^2)-1, where r=r(t,z) is the Narayana function, defined by (1+r)(1+tr)z=r, r(t,0)=0. More generally, the g.f. H=H(t,s,u,z), where t,s and u mark double rises above, below and on the x-axis, respectively, is H=[1+r(s,z)]/[1-z(1+tr(t,z))(1+ur(s,z))].
A118964 G.f.: G(t,z)=(1+r)/[1-z(1+r)C]-1, where r=r(t,z) is the Narayana function, defined by (1+r)(1+tr)z=r, r(t,0)=0 and C=C(z)=[1-sqrt(1-4z)]/(2z) is the Catalan function. More generally, the g.f. H=H(t,s,u,z), where t,s and u mark double rises above, below and on the x-axis, respectively, is H=[1+r(s,z)]/[1-z(1+tr(t,z))(1+ur(s,z))].
A119011 G.f.=G(t,z)=1/[1-zr(t,z)]-1, where r=r(t,z) is the Narayana function, defined by (1+r)(1+tr)z=r, r(t,0)=0. See Maple program for the explicit form of G(t,z).
A120429 T(n,k)=(1/(n+1))*binomial(n+1,k)*sum(3^(n-2k+j+2)*binomial(n+1-k,j)*binomial(j,k-1-j), j=0..n+1-k). G.f.=G=G(t,z) satisfies G = [1+z(G-1+t)]^3.
A120933 T(n,k)=k*2^(n-k-1) if k<n; T(n,n)=n+1. G=G(t,z)=(1-2z+tz^2)/[(1-2z)(1-tz)^2] - 1.
A120981 T(n,k)=(1/(n+1))*binomial(n+1,k)*sum(3^(2k-n+3j)*binomial(n+1-k,j)*binomial(j,n-k-2j), j=0..n+1-k). G.f.=G=G(t,z) satisfies G = 1+3tzG+3z^2*G^2+z^3*G^3.
A120982 T(n,k)=(1/(n+1))*binomial(n+1,k)*sum(3^(n-k-3j)*binomial(n+1-k,k+1+2j)*binomial(n-2k-2j,j), j=0..n/2-k). G.f.=G=G(t,z) satisfies G = 1+3zG+3tz^2*G^2+z^3*G^3.
A120983 T(n,k)=(1/(n+1))*binomial(n+1,k)*sum(3^j*binomial(n+1-k,j)*binomial(j,n-3k-j), j=0..n+1-k). G.f.=G=G(t,z) satisfies G=1+3zG+3z^2*G^2+tz^3*G^3.
A120986 T(n,k)=(1/(n+1))*binomial(n+1,k)*binomial(2(n+1),n-k). G.f.=G=G(t,z) satisfies G=(1+tzG)(1+zG)^2.
A121445 G.f.=G=G(t,z)=1/[1-t(h-1-z)/(h-1)]-1, where h=1+zh^3=2sin(arcsin(sqrt(27z/4))/3)/sqrt(3z).
A121448 T(n,k)=2^k*binomial(n+1,k)binomial(n+1-k,(n-k)/2)/(n+1) if n-k is even; otherwise, T(n,k)=0. G.f. G=G(t,z) satisfies G=1+2tzG+z^2*G^2.
A121460 T(n,k)=binomial(n-2,k-2)+Sum(fibonacci(2j-1)*binomial(n-2-j,k-2), j=1..n-k). G.f.=G=G(t,z)=tz(1-2z)(1-z)/[(1-3z+z^2)(1-z-tz)].
A121461 G.f.: G=G(t,z)=tz(1-z)^2/[(1-3z+z^2)(1-tz)].
A121462 G.f.=G=G(t,z)=tz(1-z)/(1-2tz-z+tz^2).
A121463 T(n,k)=Sum(binomial(n,2*k+j)*binomial(k-1+j,k-1),j=0..n-2*k) (k<=n/2). G.f.=G=G(t,z)=(1-2z)/(1-3z+2z^2-tz^2)-1.
A121464 T(n,k)=binomial(n,k)+Sum(binomial(n-j,k)*fibonacci(2j-4), j=1..n-k). G.f.=G=G(t,z)=(1-2z)^2/[(1-3z+z^2)(1-z-tz)].
A121465 T(n,0)=fibonacci(2*n-3)-1; T(n,k)=2^(k-1)*(fibonacci(2n-2k-3)-1) for 1<=k<=n. G.f.=G=G(t,z)=(1-2z)^2*(1-tz)/[(1-3z+z^2)(1-z)(1-2tz)].
A121501 a(k) is such that E(a(k),A121500(a(k)) < min(E(n,A121500(n)),n=3..a(k)-1), k>=2, a(1):=3, with the relative error E(n,m):= abs(F(n,m)-Pi))/Pi and F(n,m):= (Fin(n)+Fout(m))/2, where Fin(n):=(n/2)*sin(2*Pi/ n) and Fout(m):= m*tan(Pi/m).
A121531 G=G(t,z)=z(1-2tz^2-tz^3)(1-tz^2)/[(1-z-tz^2)(1-z-z^2-3tz^2-tz^3+t^2*z^4)].
A122774 (n B m+1) = (n B m) 2(n-m) / (2(n-m)-1), 1<=m<n
A123590 m(n,m,d)=If[m == n + Floor[d/3], 1, If[m == n - Floor[d/3], 1,If[m == n + Floor[2*d/3], 1, If[m == n - Floor[2*d/3],1, If[ n <= Floor[d/3] && m <= Floor[d/3] && (n < m || n > m), 1, If[ n > Floor[d/3] && n < Floor[2*d/3] + 1 && m > Floor[d/3] && m < Floor[2*d/3] + 1 && (n < m ||n > m), 1, If[ n > Floor[2*d/3] && m > Floor[2*d/3] && (n < m || n > m), 1, If[n == m, 0, 0]]]]]]]]
A123735 m(n,m,d)=If[ n == m, 0, If[n == m - 1 || n ==m + 1, -1, If[n == m - 2 || n == m + 2, -1, 0]]]
A123949 x(i,j)=a(i,j)^(-1).b(i,j) p(n,x)=CharacteristicPolyynomial(x(i,j)) p(n,x)->t(n,m)
A124022 k=2; m(n,m,d)= = Table[If[n +m - 1 == d && n > 1, k, If[n + m == d, -1, If[n + m - 2 == d, -1, If[n == 1 && m == d, k - 1, 0]]]], {n, 1, d}, {m, 1, d}];
A124028 m(n,m,d)=If[n + m - 1 == d, 4, If[n + m == d, -1, If[n + m - 2 == d, -1, 0]]]
A124031 m(n,m,d)=If[ n == m, (-1)^n, If[n == m - 1 || n == m + 1, -1, 0]]
A124034 k=1; m(n,m,d)=If[n + m - 1 == d && n > 1, k, If[n + m ==d, -1, If[n + m - 2 == d, -1, If[n == 1 && m == d, -k, 0]]]]
A124035 m(n,m,d)=If[ n == m && n < d && m < d, 1, If[n == m - 1 || n == m + 1, -1, If[n == m == d, -1, 0]]
A124036 m(n,m,d)=If[ n == m, 1 + (1 - (-1)^(n + 1))/2, If[n == m - 1 || n == m + 1, 1 + (1 - (-1)^n)/2, 0]]
A124038 m(n,n,d)=If[ n == m && n > 1 && m > 1, y, If[n == m - 1 || n == m + 1, -1, If[n == m == 1, y - 2, 0]]]; Det(m,n,m,d)=P(d,y)
A124039 m(n,m,d)=If[ n == m && n > 1 && m > 1, 0, If[n == m - 1 || n == m + 1, -1, If[n == m == 1, 3, 0]]]
A124040 m(n,m,d)=If[ n == m, 3, If[n == m - 1 || n ==m + 1, 1, If[(n == 1 && m == d) || (n == d && m == 1), 1, 0]]]
A125270 Let p = Prime(n), q = Prime(n+1), r = Prime(n+2), s = Prime(n+3) and t = Prime(n+4). Then a(n) = p q (r+s+t) + (p + q) r (s + t) + (p + q + r) s t.
A126177 T(n,k)=3^(n-2k+2)binomial(2k-2,k-1)*binomial(n,2k-2)/k. Proof: There are Catalan(k-1) full binary trees with k leaves. Each of them has 2k-2 edges. Additional n-2k+2 edges can be inserted as paths at the existing 2k-1 vertices in 3^(n-2k+2)*binom(n,2k-2) ways. G.f.=G=G(t,z) satisfies z^2*G^2-(1-3z-2tz^2)G+tz(3+tz)=0.
A126178 T(n,k)=[3^k/(n+1)]binomial(n+1,k)*binomial(n+1-k,(n-k)/2) (0<=k<=n). G.f.=G=G(t,z) satisfies G=1+3tzG+z^2*G^2.
A126181 G.f.: G = G(t,z) satisfies G = 1+(2+t)*z*G+z^2*G^2.
A126182 T(n,k)=[1/(n+1)]*binomial(n+1,k)*sum(2^j*binomial(k,n-k-j)*binomial(n+1-k,j),j=n-2k..n-k) if 0<k<=n; T(n,0)=2^n. G.f. G=G(t,z) satisfies G = 1 + (t+2)*z*G + t*z^2*G^2.
A126183 G.f.: G(t,z)=1+3*z*H+z^2*H^2, where H=H(t,z) is defined by H=1+3*z*H+t*z^2*H^2 (see explicit expression of G(t,z) at the Maple program).
A126188 G.f.: G = G(t,z) = 1+3*z*G+z^2*(1+3*z*G+t*(G-1-3*z*G))^2 (explicit expression in the Maple program).
A126191 G.f.=G=G(t,z) satisfies G=1+zG+z^2*(G^2-1+t).
A126218 G.f.=G=G(t,z) satisfies G=1+zG+z^2*[1+zG+t(G-1-zG)]^2 (see the Maple program for the explicit expression).
A126219 G.f.=G=G(t,z) satisfies G=1+2zG+z^2*[1+2zG+t(G-2zG-1)]^2 (see the Maple program for the explicit expression).
A126222 G.f.: G=G(t,z) satisfies z(t+z-t^2*z)G^2-G+1=0.
A127155 G.f.=G=G(t,z) satisfies: z(1-z+tz)^2*G^2-(1-z+tz)(1+z-tz)G+1 = 0.
A127157 T(n,k)=2*binomial(3k-1,2k)*binomial(n-1+k,3k-2)/(3k-1) (formula obtained only by inspection). G.f.=G-1, where G=G(t,z) satisfies z^2*G^3-z(z+2)G^2+(1+2z)G-t^2*z-1=0.
A127529 G.f. G=G(t,z) satisfies (1-t-2*z+t*z)*G^2 - (1-2*t-z+t*z)*G-t = 0.
A127530 G.f.=G=G(t,z) is given by G=1+2zG+z^2[t(G-1)+1]G.
A127532 G.f.=G=G(t,z) is given by (1-t-2z+2tz-z^2)G^2-(1-2t+2tz)G-t=0.
A127535 G.f.=G=G(t,z) is given by (2t-1-t^2+2z-tz)G^3-(2+2tz-2t-5z)G^2+(4z-tz-1)G+z=0.
A127537 T(n,k)=C(3n-3,n+k)C(k-1,k-n+1)/(n-1) (n>=2, 0<=k<=2n-3). G.f.=G=G(t,z) satisfies tG^3+tG^2-z(1+2t)G+z^2*(1+t)=0.
A127671 a(n,m)=((-1)^(m-1))*(m-1)!*M_3(n,m) with M_3(n,m):=A036040(n,m) (Abramowitz-Stegun M_3 numbers).
A128500 a(n)=numerator(r(n)) with the rationals r(n):=sum(((-1)^k)*S(k,1)/(k+1),k=0..n) with Chebyshev's S-Polynomials S(k,1)=[1,1,0,-1,-1,0] periodic sequence with period 6. See A010892.
A128501 a(n+1) = denominator(r(n)) with the rationals r(n):=sum(((-1)^k)*S(k,1)/(k+1),k=0..n) with Chebyshev's S-Polynomials S(n,1)=[1,1,0,-1,-1,0] periodic sequence with period 6. See A010892.
A128506 a(n)=numerator(r(n)) with the rationals r(n):=sum(S(2*k,sqrt(2))/(2*k+1)^3,k=0..n) with Chebyshev's S-Polynomials S(2*k,sqrt(2))=[1,1,-1,-1] periodic sequence with period 4. See A057077.
A128507 a(n)=denominator(r(n)) with the rationals r(n):=sum(S(2*k,sqrt(2))/(2*k+1)^3,k=0..n) with Chebyshev's S-Polynomials S(2*k,sqrt(2))=[1,1,-1,-1] periodic sequence with period 4. See A057077.
A128719 G.f.=G=G(t,z) satisfies z(t+z-tz)G^2-(1-z-z^2+tz^2)G+1-tz=0.
A128724 G.f.=G=G(t,z) satisfies z^2*G^3-z(2-tz)G^2+(1+z-z^2-tzG+tz-1=0.
A128727 T(n,k)=(1/n)*3^(n-1-2k)*binom(n,k)*binom(n-k,k+1) G.f.=G=G(t,z) satisfies tzG^2-(1-3z+2tz)G+1-2z+tz=0.
A128728 G.f.=G=G(t,z) satisfies z^2*G^3-z(2-z)G^2+(1-z^2)G-1+z+z^2-tz^2=0.
A128731 G.f.=G=G(t,z) satisfies z^2*G^3-z(2-z)G^2+(1-tz^2)G-1+z=0.
A128733 G.f.=G=G(t,z) satisfies tz^2*G^3-(t-1)z^2*G^2-(1-3z+2z^2)G+(1-z)^2=0.
A128735 G.f.=G=G(t,z) satisfies (t+1)zG^3-(2-4z+3tz)G^2+3(1-2z+tz)G-1+2z-tz=0.
A128738 G.f.= G=G(t,z) satisfies z^2*G^3-z(1-t)(1-z)G^2-(1-z)(1-3z+tz)G+(1-z)^2=0.
A128739 G.f.= G=G(t,z) satisfies z^2*G^3-z(1-z)G^2-(1-z)(1-3z)G+(1-z)^2=0.
A128747 G.f.=G(t,z)=[1-z+zK(t,z)]/[1-zK(t,z)]-1, where K=K(t,z) satisfies zK^2-(1-tz)K+1-z=0 (K is the g.f. for the number of peaks; see A126182).
A128749 G.f.=G=G(t,z) satisfies z(1+z-tz)G^2-(1-tz+tz^2-z^2)G+1-z=0.
A128751 G.f.=G=G(t,z) satisfies z(1-z+tz)G^2-(1-z+z^2-tz^2)G+1-z=0.
A128753 G.f.=G=G(t,z) satisfies z(1+z-tz)G^2-(1-tz)G+1-tz=0. G=C((1+z-tz)/(1-tz)), where C(z)=[1-sqrt(1-4z)]/(2z) is the Catalan function.
A128894 a[a,k]= (3*a + 2*k + 5)*binomial[k + 2*a + 3, k]*binomial[k + 5*a/2 + 3, k]*binomial[k + 3*a + 4, k]/((3*a + 5)*binomial[k + a/2 + 1, k]*binomial[k + a + 1, k])
A129159 G.f.=tzhg + z(h-1), where g=1+zg^2+z(g-1)=[1-z-sqrt(1-6z+5z^2)] and h=1+tzh^2+z(h-1) (h=h(t,z) is the g.f. for skew Dyck paths according to the semi-abscissa of the last point on the x-axis and semilength; see A108198).
A129163 G.f.=G-1, where G=G(t,z) is given by z(1-tz)G^2-(1-2tz+tz^2)G+(1-z)(1-tz)=0.
A129180 G.f.=(1+z)[1-z-sqrt(1-6z+z^2)]^2/[4z(1-6z+z^2)] (obtained by computing (dG/dt)_{t=1} where G=G(t,z) is defined by G(t,z)=1+zG(t,z)+tzG(t,t^2*z)G(t,z); see A129179).
A132277 G.f.=G=G(t,z) satisfies G = 1 + tzG + z^2*G + z^2*G^2 (see explicit expression at the Maple program).
A132279 G.f. = G = G(t,z) satisfies G = 1+zG+z^2*G+z^2*[t(G-1-zG-z^2*G)+1+zG+z^2*G]G (see explicit expression at the Maple program).
A132280 G.f.=G=G(t,z) satisfies G = 1+zG+tz^2*G+z^2*G^2 (see explicit expression at the Maple program).
A132883 G.f.=G=G(t,z) satisfies G=1+zG+z^2*G+tz^2*G^2 (see explicit expression at the Maple program).
A132893 G.f.=G=G(t,z) satisfies z(1-3z+z^(2)-tz^(2))G^(2)+(1-3z+z^(2)-tz^(2))G-1=0 (see the Maple program for the explicit expression of G).
A135281 a(n)=(-1)^n*(n-1)!; b[n]=(n-1)!; m(i,j)=If[i > j, (-1)^(i + j)*((a[j + 1]*a[j + 2] - b[i + 1]^2)/(n + 1)!)/(j!*(i - j)!), 0] t(n,m)=(n+2)*Coefficients of Characteristic polynomials of inverse of m(i,j)
A135305 G.f.: G=G(t,z) satisfies (1-t)z^3*G^3+z(t+z-tz)G^2+((1-t)z-1)G+1=0. - _Emeric Deutsch_, Dec 14 2007
A135835 L(i,1=L(i,i)=i, otherwise L(i,j)=Sum[L(i-j-1,k)*L(j,k)
A136262 The Hermite Integral form is: IH[x,n]=(x*H[x,n]-H'[x,n])/n Which can be done as an integer form: n*IH[x,n]
A136643 a(n)= 1; b(n)= 2; c(n) = -2; T(n, m, d) := If[ n == m,a(n), If[n == m - 1 || n == m + 1, If[n == m - 1, c(m - 1), If[n == m + 1, b(n - 1), 0]], 0]];
A136644 a(n)= 1; b(n)= 2; c(n) = 1; T(n, m, d) := If[ n == m,a(n), If[n == m - 1 || n == m + 1, If[n == m - 1, c(m - 1), If[n == m + 1, b(n - 1), 0]], 0]];
A137503 Let w(n) = b(n) - sum_{1<d<m,d even,d|m}{c(n/d)} - sum_{1<d<m,d odd,d|m}{w(n/d)}.
A137949 M(3)= {{0, -3/2, 0}, {-3/2, 0, -3/2}, {0, -3/2, 0}} m(n,m)=If[ n == m, 0, If[n == m - 1 || n == m + 1, -d/2, 0]]->P(x,n); out_n,m=2^(n-1)*Coefficients(P(x,n)).
A140698 Galois polynomial GF(2^p) g[x,p]=x^p+x+1 Cyclotomic polynomial for primes: c[x,p]=Sum[x^i,{i,0,p}] ratio polynomial: q[x,p]=c[x,p]/g[x,p] Toral inverse for expansion: p[x,p]=x^p*g[1/x,p]/(x^p*c[x,p]) a(n,m)=Anti-diagonal Coefficients(p[x,p]).
A141058 Gf: Sum_{n>=0,k>=0}T(n,k)*x^n*y^k = (1 + x y CatalanGF[x y])/(1 - x^2 y CatalanGF[x] CatalanGF[x y]) where CatalanGF[x] = (1-Sqrt[1-4x])/(2x) is the Gf for the Catalan numbers A000108.
A141525 a(n)=If[Mod[n, 3] == 0, a(n - 2) + a(n - 3), If(Mod[n, 4) == 0, a(n - 1) + a(n - 4), a(n - 1), a(n - 2)]].
A141760 Let U = unsigned matrix inverse (T^-1) with leftmost column dropped, then U = A107876 where [U^k](n,k) = U(n,k-1) for n>=k>0.
A142240 b(n,m)=b(n-1,m]+m; Delta_diagonal=m; m={0,1,2,3,...k}.
A143024 T(n,k)=2*binom(k-2, n-3)binom(3n-5, 2n-k-4)/(n-2) (n>=3, 2<=k<=2n-4); T(2,1)=1; T(2,k)=0 (k>=2). The trivariate g.f. G=G(t,s,z) for non-crossing connected graphs on nodes on a circle, with respect to number of nodes (marked by z), number of edges (marked by t) and degree of root (marked by s) is G=z + tszg^2/[z-ts(g - z + g^2)], where g=g(t,z) satisfies tg^3 + tg^2 - (1 + 2t)zg +(1 + t)z^2 = 0 (see Domb & Barrett, Eq. (47); Flajolet & Noy, Eq. (18)).
A143362 G.g.=G-1, where G=G(t,z) satisfies G = 1/(1-zG) + z(t-1)(G-1)/(1+z-zG).
A143364 G.f.=g, where g=g(t,z) satisfies tz^2*g^2-(1-tz-2z^2)g+z(1+z)=0.
A143734 q(1,1,1) = 1; q(1,1,2) = 1; q(1,2,1) = 1; q(1,1,2) = 1; q(i_,j,k) = Sum(q(x,j,k), {x,1,i-1}) + Sum(q(i,y,k), {y,1,j-1}] + Sum(q(i,j,z), {z,1,k-1}) + Sum(q(i-w,j-w,k), {w,1,Min(i,j)}) + Sum(q(i,j-w,k-w), {w,1,Min(j, k)}) + Sum(q(i-w,j,k-w), {w,1,Min(i,k)}) + Sum(q(i-w,j-w,k-w), {w,1,Min(i,j,k)}); a(n) = q(n,n,n).
A143950 G.f. G=G(s,z) satisfies G = 1 + zG(1 + szG)/(1 - z^2*G^2).
A143950 The trivariate g.f. H=H(t,s,z), where t (s) marks odd-length (even-length) ascents satisfies H = 1 + zH(t+szH)/(1-z^2*H^2).
A143952 The g.f. G=G(t,z) satisfies z(1-z)G^2 - (1-z+z^2-tz^2)G+1-z = 0 (for the explicit form of G see the Maple program).
A143952 The trivariate g.f. g=g(x,y,z) of Dyck paths with respect to number of peak plateaux, number of peaks in the peak plateaux and semilength, marked, by x, y and z, respectively satisfies g=1+zg[g+xyz/(1-yz)-z/(1-z)].
A143953 The g.f. G=G(t,z) satisfies z(1-z)(1-tz)G^2-(1-z+z^2-tz)G+(1-z)(1-tz) = 0 (for the explicit form of G see the Maple program).
A143953 The trivariate g.f. g=g(x,y,z) of Dyck paths with respect to number of peak plateaux, number of peaks in the peak plateaux and semilength, marked, by x, y and z, respectively satisfies g=1+zg[g+xyz/(1-yz)-z/(1-z)].
A144409 f(t,n)=If[n == 1, 1/(1 - t), 1/(1 - t^Floor[n/2] - t^n)]; t(n,m)=anti_diagonal_expansion(f(t,n)).
A144462 a(n)=A000045(n); t(n,m)=If[m == 0 || m == 1, 2 - m, If[ m < n, Ceiling[(a(m) - 1)/a(n) + 1], a(n) + 1]].
A147315 (5)... R(n+1,x) = x*{R(n,x)+R'(n,x)+1/2*R''(n,x)},
A147315 (6)... Bell(n+1,x) = x*(Bell(n,x)+Bell'(n,x)).
A147517 Using a limited dataset, the approximate relation is the quadratic Y=Ax^2+Bx+C (A,B,C)=(0.12267, 0.75758, -1.592)
A152547 G.f. of row n: Sum_{k=0..n} (x^binomial(n,k) - 1)/(x-1) = Sum_{k=0..binomial(n,n\2)-1} T(n,k)*x^k.
A154714 f(1,x)=x+1; f(n+1,x)=f(n,f(n,...f(n,x)...)), the formula contains x applications of f; a(n)=f(n,2)
A157117 t(n,m)=If[m <= n, t0(n*m + 1, n - m), t0(n*(n - m) + 1, m]) +
A157785 m(n,k)=If[k == m, q^(n - k), If[m == 1 && k < n, q^(n - k), If[k == n && m == 1, -(n-1), If[ k == n && m > 1, 1, 0]]]].
A157972 m(n,m,d)=If[ n == m, 2, If[n == m - 1 || n == m + 1, -1, 0]];
A157972 p(x,n)=Characteristicpolynomial(m(n,m,k),x);
A157981 out_(n,m)=coefficient(characteristicpolynomial(m(23,7,n))).
A158202 m(n,m,d)=If[ m <= n, Mod[Binomial[n, m], 2], 0];
A158202 M(n)=m(n,m,d).Transpose[m(n,m,d)].Transpose[m(n,m,d)].m(n,m,d);
A158777 t(n,m)=coefficients(expansion(p(x,t),t),t).
A158785 t(n,m)=2^Floor[n/2]*n!*coefficients(expansion(p(x,t),t),t)
A160679 a(n) = NIM(n, a(NIM(n, a(n, TIM(n,n)) )
A161009 T(n, m) = T'(n-1, m-1)+T'(n-1,m+1)+T'(n-1, m)+T'(n-2, m)+T'(n-3,m), where T'(n, m) = T(n, m)
A162984 G.f.: G=G(t,z) satisfies G = 1 + zG + z^2*G + z^3*(G-1+t)G.
A166284 G.f. G=G(t,z) satisfies G = 1 + zG + tz^2*G + z^3*G^2.
A166285 G.f. G=G(t,z) satisfies G = 1 + zG + z^2*G + z^3*G[G+(t-1)/(1-z)].
A166288 G.f.: G(t,z) -1, where G=G(t,z) satisfies z^3*G^2 - (1+z-tz)(1-tz-z^2)G+(1+z-tz)^2=0.
A166291 The trivariate g.f. G=G(t,s,z), where z marks semilength, t marks odd-level peaks and s marks even-level peaks, satisfies G = 1 + tzG + sz^2*G + s^2*z^3*HG, where H=G(s,t,z) (interchanging t and s and eliminating H, one obtains G(t,s,z); see the Maple program).
A166293 The trivariate g.f. G=G(t,s,z), where z marks semilength, t marks odd-level peaks and s marks even-level peaks, satisfies G = 1 + tzG + sz^2*G + s^2*z^3*HG, where H=G(s,t,z) (interchanging t and s and eliminating H, one obtains G(t,s,z); see the Maple program).
A166301 G.f.: G=G(t,z) satisfies G = 1 + zG[G - 1 + tz - tz(1 - t)/(1 - tz)].
A167634 G.f.: G=G(t,z) satisfies z(1+z-z^2)G^2-(1+z-z^2)(1+z-tz^2)G + 1+z-tz^2=0.
A167634 The trivariate g.f. G=G(t,s,z), where t marks odd-level peaks, s marks even-level peaks, and z marks semilength, satisfies aG^2 - bG + c = 0, where a = z(1+z-sz^2), b=(1+z-tz^2)(1+z-sz^2), c=1+z-tz^2.
A167637 G.f.: G=G(t,z) satisfies z(1+z-tz^2)G^2-(1+z-z^2)(1+z-tz^2)G + 1+z-z^2=0.
A167637 The trivariate g.f. G=G(t,s,z), where t marks odd-level peaks, s marks even-level peaks, and z marks semilength, satisfies aG^2 - bG + c = 0, where a = z(1+z-sz^2), b=(1+z-tz^2)(1+z-sz^2), c=1+z-tz^2.
A170747 a(n)= Sum_{k 0<=k<=n} A097805(n,k)*(-1)^(n-k)*28^k. [From _Philippe Deléham_, Dec 04 2009]
A171846 G.f. G=G(t,z) satisfies: G(t,z)=1/[1 - z + tz^2 - tz^2*G(t,tz)] (yielding a continued-fraction expression for G(t,z)).
A171848 The trivariate g.f. G=G(t,u,z), where z marks length, t marks area below the level steps, and u marks number of level steps, satisfies G(t,u,z)=1+uzG(t,u,z)+z^2*(G(t,tu,z) - 1)G(t,u,z).
A171850 The trivariate g.f. G=G(t,u,z), where z marks length, t marks the area below the path, and x marks number of U-steps, satisfies G(t,x,z)=1+zG(t,x,z)+txz^2*(G(t,x,tz) - 1)G(t,x,z) (yielding a continued fraction expression for G(t,1/t,z)).
A171852 The g.f. G=G(t,z) satisfies G = 1 + zG + z^2*G*(G - 1 + z*(t - 1)/[(1 - z)(1 - t*z^2)].
A172986 a(n)=If[n==0,0,If[n <= 20, A029826(n+1), a(n - 1 - Mod[n, 20]) + A029826(2 + Mod[n, 20])]
A174119 c(n)=If[n == 0, 1, If[n == 1, 1, Product[i*(i - 1)*(2*i - 1)/6, {i, 2, n}]];
A174150 c(n)=If[n == 0 || n == 1, 1, Product[If[ i == 2, 6, i*(i^2 - 1)/2], {i, 2, n}]];
A174151 c(n)=If[n == 0 || n == 1, 1, Product[If[ i == 2, 12, i*(i^2 - 1)*(i + 2)/2], {i, 2, n}]];
A176417 t(n,m,q)=1 - n! + n!*c(n, q)/(c[m, q)*c(n - m, q))/Binomial[n, m]
A176418 t(n,m,q)=1 - n! + n!*c(n, q)/(c[m, q)*c(n - m, q))/Binomial[n, m]
A176419 t(n,m,q)=1 - n! + n!*c(n, q)/(c[m, q)*c(n - m, q))/Binomial[n, m]
A176420 t(n,m,q)=t(n,m,q)=1 c(n, q)/(c[m, q)*c(n - m, q))-Binomial[n, m]
A176421 t(n,m,q)=t(n,m,q)=1 c(n, q)/(c[m, q)*c(n - m, q))-Binomial[n, m]
A176422 t(n,m,q)=t(n,m,q)=1 c(n, q)/(c[m, q)*c(n - m, q))-Binomial[n, m]
A177378 For sufficiently large n, 2^n-1<=a(n)<=2^ceil(40*n/19). Let k>=n. Put g=g(n,k)=min{odd j>=2^(k-n): 2^k-j is prime} and h(n)=min{k: k-n=floor(log_2(g))}. Then a(n)=2^h(n)-g(n,h(n)).
A177947 t(n,m)=1/Integrate[(-1 + t)^n/t^(m + n + 2), {t, 1, Infinity}] - (-2 Binomial[m + n, m] + Binomial[2 + m + n, 1 + m]);
A178519 G.f. G=G(t,z) satisfies zG^2-(1-z^3+tz^3)G+1-z^2+tz^2=0.
A178603 t(n,m)=(2^(n=3)*n!)*coefficients(p(x,t))
A180572 The bivariate g.f. G=G(t,z) appears in the Maple program.
A181289 T(n,k = 2*T(n-1,k)+2*T(n-1,k-1)-T(n-2,k)-T(n-2,k-1), T(0,0)=1, T(1,0)=0, T(1,1)=2, T(2,0)=0, T(1,1)=3, T(2,2)=4, T(n,k)=0, if k<0 or if k>n. - _Philippe Deléham_, Nov 29 2013
A181304 The g.f. H=H(t,s,z), where z marks size and t (s) marks odd (even) entries in the top row, is given by H = (1+z)(1-z)^2/[(1+z)(1-z)^2-(t+s)z-sz^2*(1-z)].
A181336 The g.f. H=H(t,s,z), where z marks size and t (s) marks odd (even) entries in the top row, is given by H = (1+z)(1-z)^2/[(1+z)(1-z)^2-(t+s)z-sz^2*(1-z)].
A182107 a(n) = 2 * sum(i=1..floor( (n-1)/2 ), ( sum( k_1+k_2 == (n^2-n)/4-(n-i-1), S(n-i-2,k_1) * S(i-1,k_2) ) + sum(k_1+k_2 == (n^2-n)/4, S(floor( (n-2)/2 ) , k_1 ) * S( floor( (n-2)/2 ), k_2 ), where S(n,k) = S(n-1, k) + S(n-1, k-n), S(0,0)=1, S(0,k) = 0, S(n,k) = 0 if k < 0 or k > binom(n+1,2).
A182898 The trivariate g.f. H=H(t,s,z), where t (s) marks (1,-1)-returns ((1,1)-returns) to the horizontal axis, and z marks weight is given by H=1+zH+z^2*H+(t+s)z^3*cH, where c satisfies c = 1+zc+z^2*c+z^3*c^2.
A182900 G. f.: F=F(v,z) satisfies z^3*(z+z^2+v-vz-vz^2)F^2 - (1-z-z^2-z^3+vz^3)F+1=0 (z marks weight, v marks number of valleys).
A182903 Let F=F(t,s,x,y,z) be the 5-variate g.f. of the considered weighted lattice paths, where z marks weight, t (s) marks number of peaks (valleys), x (y) indicates that the path starts with a (1,1)-step ((1,-1)-step). Then F(t,s,x,y,z)=1+z(1+z)F(t,s,1,1,z)+xz^3[t+H(t,s,z)-1]F(t,s,s,1,z)+yz^3[s+H(s,t,z)-1]F(t,s,1,t,z), where H=H(t,s,z) is given by H=1+zH+z^2*H+z^3*(t-1+H)[s(H-1-zH-z^2*H)+1+zH+z^2*H] (see A182900).
A185422 (5)... R(n+1,x) = x*{R(n,x)+R'(n,x)+R''(n,x)},
A187778 Sum(n>0, 1/a(n)^k) = 1 + Sum(i>0, Sum(j>0, 1/(2^i * 3^j)^k = 1 + 1/((2^k-1)*(3^k-1)).
A190164 G.f. = G = G(t,z) satisfies the equation z^2*(1-tz+z^2)G^2-(1-z+z^2)(1-tz+z^2)G+1-z+z^2=0.
A190167 G.f. = G = G(s,z) satisfies the equation z^2*(1-z+z^2)G^2-(1-z+z^2)(1-sz+z^2)G+1-sz+z^2=0.
A190170 G.f. G=G(t,z) is obtained by elimitaing S from the equations G=1+zG+z^2*G(S-1-z+tz) and S=1+zS+z^2*S(S-1).
A190172 G.f. G=G(t,z) satisfies the equation G = 1 + zG + z^2*G(G-1-z+tz).
A191305 G.f.: G=G(t,z) satisfies G = 1+z*G + z^2*G(C-1+t), where C=1+z^2*C^2 (and G=2/(1-2*z+2*z^2-2*t*z^2+sqrt(1-4*z^2)), see Maple program).
A191306 G.f.: G=G(t,z) satisfies G = 1+z*G + t*z^2*g/(1-t*z^2*C), where C=1+z^2*C^2 and g=2/(1-2*z+sqrt(1-4*z^2)).
A191308 G.f.: G=G(t,z) satisfies G = 1+z*G + z^2*G(1+t*r), where r=r(t,z) is given by r=z^2*(1+r)*(1+t*r) (the Narayana function).
A191316 G.f.: G=G(t,z) is given by z*(1-2*z+z^2-z^3-t*z^2+t*z^3)*G^2 +(1-2*z)*(1+z^2-t*z^2)*G -(1+z^2-t*z^2)=0.
A191316 This can also be written as G = C/(1-z*C), where C=C(t,z) is given by z^2*C^2 - (1 + z^2 - t*z^2)*C + 1 + z^2 - t*z^2 = 0. - Emeric Deutsch, Jun 18 2011
A191318 G.f.: G=G(t,z) satisfies z*(1-z)*(z-1+2*t*z^2)*G^2 + (1-z)*(z-1+2*t*z^2)*G+1-t*z^2=0.
A191387 G.f.: G=G(t,z) is given by G=1+z*G +z^2*c*(t*(G-1-z*G)+1+z*G), where c=(1-sqrt(1-4*z^2))/(2*z^2).
A191395 G.f.: G=G(t,z) satisfies G = 1+z*G+z^2*G*(c+t/(1-t*z^2)-1/(1-z^2)), where c = (1-sqrt(1-4*z^2))/(2*z^2) (the Catalan function with argument z^2).
A191399 G.f. G=G(t,z) satisfies the equation (t*z^4-z^4-2*z^3+z^2+2*z-1)*G*(1+z*G)+1-z^2=0.
A191518 G.f.: G=G(t,z) satisfies aG^2 + bG -1 = 0, where a=z(1-z-z^2-z^3-tz+tz^2+tz^3), and b=1-2z-z^2+tz^2.
A191523 G.f.: G(t,z)=(z+r+r*z)/(1-t*z*(1+r)) where r=r(t,z) is a solution of z^2*(1+r)*(1+t*r) (the Narayana function with argument z^2).
A191785 G.f.: G=G(t,z) is given by G = C + z*C*(t*(G - 1 - z - z^2*G) + 1 + z + z^2*G), where C=C(t,z) is the solution of the equation z^2*(t+z^2-t*z^2)*C^2 - (1 - z^2 + t*z^2)*C + 1 = 0.
A191791 G.f.: G(t,z) = C/(1-z*C), where C=C(t,z) is given by z^2*(1+z^2-t*z^2)*C^2 - (1+z^2+z^4- t*z^2-t*z^4)*C + 1 + z^2 - t*z^2 = 0.
A191793 G.f.: G(t,z)= C/(1-z*C), where C=C(t,z) is given by z^2*C^2-(1+z^4-t*z^4)*C +1=0.
A191795 G.f.: G(t,z) =1- (1-C-z*C)/(1-z+t*z-t*z*C), where C=C(t,z) is given by t*z^2*C^2 - (1-2*z^2+2*t*z^2)*C + 1-z^2+t*z^2 = 0.
A197653 C = (C(n,k))^2 *(C(n,n-1-k))^2
A197654 C = (C(n,k))^3 *(C(n,n-1-k))^2
A197655 C = (C(n,k))^4 *(C(n,n-1-k))^2
A204456 a(m,k) = a(p(m);k+1) - a(p(m);k), m>=2, k=0,...,(p(m)-1)/2,
A209830 As DELTA-triangle : T(n,k) = 3*T(n-1,k-1) + T(n-2,k) + 2*T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1 = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k<0 or if k>n . - _Philippe Deléham_, Mar 16 2012
A228094 d(n,k) = phi(n/k) + d'(n,k), where: If n is odd, then d'(n,k)= n when k=(n+1)/2 and d'(n,k)=0 otherwise. If n is even, then d'(n,k)=n/2 when k=n/2, (n+2)/2 and d'(n,k)=0 otherwise.
A228783 a(2*L,m) = [x^m](s(4*L,x)(mod C(4*L,x))), with s(4*L,x) = sum((-1)^(L-1-s)*A111125(L-1,s)*x^(2*s+1),s=0..L-1), L >= 1, m =0, ..., delta(4*L)-1, and
A228783 a(2*L+1,m) = [x^m](s(4*L+2,x)(mod C(2*L+1,x))), with s(4*L+2,x) = sum(A127677(L,s)*(2+x)^(L-s)),s=0..L) (with s(2,x) = 2 for L = 0), L >= 0, m = 0, ..., delta(4*L+2)/2, with delta(n) = A055034(2*l).
A228785 a(l,m) = [x^(2*m+1)](s(2*l+1,x)(mod C(2*(2l+1),x))), with s(2*l+1,x) = sum((-1)^(l-1-s)* A111125(l1,s)*x^(2*s+1), s=0..l-1), l >= 1, m=0, ..., (delta(2*(2*l+1))/2 - 1), with delta(n) = A055034(n).
A233357 T(n,k) = ((S2)^2)(n,k) * k! = Sum(k<=i<=n) [ S2(n,i) * S2(i,k) ] * k!.
A236842 On the other hand, a composite integer n is in this sequence if and only if it is either in A014580 or it has such a proper factor k (1<k<n, k|n) that both k and n/k are members of this sequence.
A237716 a(2n)=Sum_{j=0}^{n/7} Binomial[n-5j, 2j]*2^{2j} + Sum_{j=0}^{(n-4)/7} Binomial[n-3-5j,2j+1}*2^{2j+1}.
A237716 a(2n+1)=Sum_{j=0}^{n/7} Binomial[n-5j, 2j]*2^{2j} + Sum_{j=0}^{(n-3)/7} Binomial[n-2-5j,2j+1}*2^{2j+1}).
A242589 sum = sum + digit-sum(digit-mult(prime,base=4),base=15). The function digit-mult(n) multiplies all digits d of n, where d > 0. For example, digit-mult(1230) = 1 * 2 * 3 = 6. Therefore, the digit-sum in base 15 of the digit-mult(333) in base 4 = digit-sum(3 * 3 * 3) = digit-sum(1C) = 1 + C = 13. (1C in base 15 = 27 in base 10).
A245191 Write n = 2^k-1+j (k>=0, 0<=j<2^k). Then a(n) = 2^(k-j+1)*A038183(j).
A246177 The trivariate g.f. G=G(t,s,z), where t marks area, s marks length (=number of steps), and z marks weight, satisfies G = 1+szG+sz^2G+ts^2z^3G(t,ts,z)G. This follows at once from the fact that every nonempty path is of the form hC or HC or UCDC, where h denotes a (1,0)-step of weight 1, H denotes a (1,0)-step of weight 2, U denotes a (1,1)-step, D denotes a (1,-1)-step, and the C's denote paths, not necessarily the same. From the equation one can find G(t,s,z) as a continued fraction (the Maple program makes use of this).
A246179 G.f. G=G(t,z) satisfies G = 1 + z*G + z^2*G + t*z^3*g*G, where g=1+z*g+z^2*g+z^3*g^2.
A246180 G.f. G=G(t,z) satisfies G = 1 + t*z*G + t*z^2*G + z^3*G^2.
A246181 G.f. G=G(t,z) satisfies G = 1 + t*z*G + z^2*G + z^3*G^2.
A246182 G.f. G=G(t,z) satisfies z^3*(1+z-t*z)*G^2 - (1-t*z-z^2+t*z^3-z^3)*G+1+z-t*z=0.
A246183 G.f. G=G(t,z) satisfies z^3*(1+z^2-t*z^2)*G^2 - (1-z-t*z^2+t*z^3-z^3)*G +1+z^2-t*z^2=0.
A246185 G.f. g = g(t,z) satisfies (t*z^3 + z^2 - t*z^2 + z - t*z - 1 + t)*g^2 +(1 - 2*t + t*z + t*z^2)*g + t = 0.
A246186 The g.f. g = g(t,z) satisfies g = 1 + z*g + z^2*g + t*z^3*g*A, where A = 1 + z*g + z^2*g + z^3*g*A.
A246187 G.f.: G(t,z) = g/(1-t*z^2*g), where g=g(t,z) satisfies g = 1 + t*z*g + t*z^2*g +t^2*z^3*g^2.
A247290 G.f. G = G(t,z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z + t*z).
A247292 G.f. G = G(t,z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z^2 + t*z^2).
A247294 G.f. G = G(t,z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z - z^2 + t*z + t*z^2).
A2472