
A proposal for templates in Fortran

Arjen Markus
arjen.markus@deltares.nl

October 21, 2019

1 Introduction

In my note ”Experimenting with generic programming features” [2] I examined
the possiblities of using modules and their renaming features to implement a
kind of templates. Basically it boiled down to the following:

• Build up the source code for a module by including pieces of code in a
new source file.

• The code pieces use a set of generic names for the derived types that are
involved.

• By using the resulting module and mapping the names of specific derived
types to these generic names, a module is created that uses these specific
types, albeit under generic names.

While the method works, there are a number of drawbacks:

• You cannot deal with the intrinsic types in the same way, so that a
workaround had to be devised (this was solved in my note by encapsulating
the variable of intrinsic type in a derived type).

• The ”generic” code uses two different fragments to build up the complete
module. This is awkward in use.

For the user of a such generic module creating a specific module with a
specific derived type is not very difficult. Here is an example taken from the
note:

module m c o l l e c t i o n r e a l a r r a y
use bas i c type s , only : data type => r ea l t ype , assignment(=)

private
public : : c o l l e c t i o n a r r a y , data type , r ea l k ind , assignment(=)

integer , parameter : : r e a l k i n d = kind (1 . 0)

1

include ’ c o l l e c t i o n a r r a y b o d y . f90 ’

end module m c o l l e c t i o n r e a l a r r a y

Note it is the generic name, data_type that this module will expose, not
the specific name.

Still, the method as described has its advantages as well: without introducing
new syntax, it handles several requirements proposed by Haveraaen et al. [1]:
type safety and renaming features.

This eperiment inspired a proposal for bringing templates into Fortran.

2 Proposed extension

The proposal is fairly limited in character and modelled on modules:

• A template is defined in much the same way as a module:

template name of template
. . . d e f i n i t i o n s (f o r i n s t anc e : a der ived type data type)

contains
. . . implementation o f r o u t i n e s

end template name of template

• The template is used in the following way (note the use of an intrinsic
type!):

module name o f spec i f i c modu l e
use some module with types
integer , parameter : : wp = kind (1 . 0 d0)

use template name−of−template , real (kind=wp) => data type

. . . d e f i n i t i o n s
contains

. . . o ther r o u t i n e s
end module name o f spec i f i c modu l e

The template construct allows the programmer to define all the specific and
generic types they need and may contain use_template statements.

To guarantee type safety, generic types need to be explicitly defined as far as
the interface is concerned, but the actual implementation is postponed. With
the interface definition of such generic types the compiler can check that the
type as used within the template fulfills the ”contract” and when instantiating
the template, the specific type can be checked against it as well (see section 4).

In all respects other than the actual implementation of generic types, it
should be valid Fortran code, so that it can be inserted when used in much the
same way as via the include directive.

2

The use_template statement causes several things to happen – at least
conceptually:

• The definitions section of the template is inserted in the definitions section
of the using module and the implementation section is to be inserted in
the implementation section of that module.

• The rename list is used to replace generic names with specific names. If
wanted or convenient, other names that appear in the template’s code,
such as the names of functions or subroutines, can also be renamed.

• The result is filled-in source code for the using module that can be pro-
cessed as if no template was referred to. What is more, the renaming
clause for use_template causes the generic names to be replaced by spe-
cific names.

3 Details of the substitution

The required ordering of statements presents a peculiar problem for any imple-
mentation of this proposal and so do the details of type names. This section is
meant to elaborate the most obvious ones.

3.1 Type names

The generic data types may be replaced by the names of derived types, so that

type (data type) : : data

becomes:

type (method parameters type) : : data

But in some contexts the name itself is used:

select type (var)
type i s (method parameters type)

. . .

This means that with intrinsic types, both type(data_type) and data_type

must be replaced by the correct intrinsic type. In other words: more is required
than a literal substitution.

We also need to take care of the various attributes: allocatable, pointer,
dimension(:) and so on.

At the rename list this can be solved via:1

use template c o l l e c t i o n a r r a y , &
real , dimension (:) , allocatable => data type

but it requires a different approach for select type cosntructs.

1Parsing is unambiguous despite the separate words, as the left-hand side of => can only
define one type and the right-hand side can contain only one word.

3

3.2 Placement of the ”use template” statement

The greatest flexibility and ease of use is achieved if there are no specific re-
strictions to the statements that can be used in a template construct. But this
means that we need to decide what happens to use statements and implicit

statements. Consider a simple example:

template g e n e r i c d i c t i o n a r y
use hash func t i on s ! General l i b r a r y f o r hash codes

implicit none

! The one gener i c data type
!
type , g e n e r i c : : va lue type
end type va lue type

! We may want to rename ” d i c t i ona r y ” i f s e v e r a l
! t ype s o f d i c t i o n a r i e s are needed , but i t i s
! not necessary
!
type d i c t i o n a r y

type (hash code) : : hash
type (va lue type) : : va lue

end type d i c t i o n a r y
end template g e n e r i c d i c t i o n a r y

module d i c t i o n a r y
use keywords

implicit none

use template g e n e r i c d i c t i o n a r y , &
character (len=40) => va lue type

. . .
end module d i c t i o n a r y

We cannot simply substitute the definitions section into the code for the
module, as that would lead to invalid placement of the implicit none and use

statements.
If the use_template statement appears outside the definition section of a

module, for instance to define specific copies of a subroutine or function, then the
code in the contains section of the template is to be copied in. The template
must be suitable for this type of use, of course, because in the end you will to
have valid Fortran code.

Proposal:
An implicit statement within a template construct should be used for the

4

template only. A data type does not have to be defined in this case (unlike for
modules and other code), but a variable, parameter or dummy argument must
have a declared type.

Proposal:
Any use statement in a template construct is added to the list of use statements
in the using code.

4 Type safety

The template code will use the generic types in expressions or assignments. The
compiler needs to be able to check that the specific types that will replace the
generic ones can actually be used. To this end the properties of the generic
types need to be specified. The way to do this is by defining a derived type with
the required data components, operations and type-bound routines. The code:

type , g e n e r i c : : data type
! No requ i r ed components

contains
g e n e r i c : : operator (+)

end type data type

defines a generic type that can be applied with additions (see below for more
details). The keyword generic guarantees that the definition is understood as
identifying the properties of a generic data type without ambiguity.

If the generic type is to have a label and is to be used in a printing routine,
the code might look like:

type , g e n e r i c : : data type
character (len=40) : : l a b e l

contains
procedure (p r i n t i n t e r f a c e) : : print

end type data type

ab s t r a c t interface
subroutine p r i n t i n t e r f a c e (th i s , lun)

type (data type) : : t h i s
integer , intent (in) : : lun

end subroutine p r i n t i n t e r f a c e
end interface

This interface definition, a ”contract” as it were, allows the compiler to check
that the template code uses the generic type in a consistent way and to check
that the specific type that is to replace the generic type upon instantiation also
adheres to this contract.

5

4.1 Contract details

To make the use of these interface contracts more convenient, I propose a few
conventions:

• An operation like addition, could be specified explicitly via an abstract in-
terface for each and every combination of operand types that is supported,
but by default generic :: operator()+ means that an ”addition” func-
tion is defined that takes two arguments of the same generic type and
returns a value of that type, similarly for subtraction. multiplication and
division.

For exponentiation this is less straightforward: the intrinsic types take
either an integer as the exponent or a real/complex value. I propose that
the minimum requirement is that exponentiation be done with an integer
exponent. Other data types for the exponent can be defined explicitly, if
needed.

• A keyword arithmetic, next to the type defines an arithmetic type. This
would be a shortcut to defining all ordinary arithmetic operations sepa-
rately:

type , a r i thmet i c : : data type
end type data type

It is allowed to define additional operations and operations with other
argument types, in the same way as you can do in ordinary code.

5 Reference implementation

Because this proposal can – at least in part – be implemented as a preprocessing
step. it should be possible to gain experience with it via a program that is ap-
plied to the source code and is independent of any compiler. In fact, a prototype
of such a program is available in my Flibs project on SourceForge – https://

sourceforge.net/p/flibs/svncode/HEAD/tree/trunk/experiments/generics/

template_preproc.f90

Note: this prototype does not yet handle the ”contract” for generic types
nor is it flexible enough to deal with continuation lines for instance.

References

[1] Magne Haveraaen, Järvi Jaakko, and Damian Rouson. Reflecting on generics
for Fortran, 2019.

[2] Arjen Markus. Experimenting with generic programming features, 2019.

6

https://sourceforge.net/p/flibs/svncode/HEAD/tree/trunk/experiments/generics/template_preproc.f90
https://sourceforge.net/p/flibs/svncode/HEAD/tree/trunk/experiments/generics/template_preproc.f90
https://sourceforge.net/p/flibs/svncode/HEAD/tree/trunk/experiments/generics/template_preproc.f90

Appendix: Full example

Here is a full example of the use of the proposed template feature. It can be
processed with the prototype program and gives the expected results.2 The idea
is to have a template for implementations of a (very simple) linked list derived
type. The template is used to define specific implementations that differ in the
type of data the list holds. Specific implementations are required to define a
printing routine that takes care of the data in the list items.

! d e f l i n k e d l i s t . f90 −−
! Very ba s i c implementat ion o f l i n k e d l i s t s
! Main purpose : i l l u s t r a t e the use o f t emp la t e s
!
! Real and rea l , dimension (:) , a l l o c a t a b l e
!
! Comparison to pure module implementat ion
!
template l i n k e d l i s t s

implicit none

private
public : : l i n k e d l i s t d e f

type , g e n e r i c : : data type ! No s p e c i f i c p r o p e r t i e s needed
end type data type

type l i n k e d l i s t d e f
type (l i n k e d l i s t d e f) , pointer : : next
type (data type) : : data

contains
procedure : : add => a d d t o l i s t
procedure : : print => p r i n t l i s t

end type l i n k e d l i s t d e f
contains
subroutine a d d t o l i s t (l i s t , data)

c l a s s (l i n k e d l i s t d e f) , intent (inout) : : l i s t
type (data type) , intent (in) : : data

type (l i n k e d l i s t d e f) , pointer : : item

allocate (item)
item%data = data

item%next => l i s t%next

2The prototype program does not understand line continuations in a use template state-
ment – it has been introduced in the listing for readability.

7

l i s t%next => item
end subroutine a d d t o l i s t

subroutine p r i n t l i s t (l i s t , lun)
c l a s s (l i n k e d l i s t d e f) , intent (in) , target : : l i s t
integer , intent (in) : : lun

type (l i n k e d l i s t d e f) , pointer : : item
integer : : i

i = 1
item => l i s t
do

ca l l p r i n t i t e m (lun , i , item%data)

i f (associated (item%next)) then
i = i + 1
item => item%next

else
exit

endif
enddo

end subroutine p r i n t l i s t
end template

module l i n k e d l i s t r e a l s
use template l i n k e d l i s t s , real => data type , &

l i n k e d l i s t r e a l => l i n k e d l i s t d e f
contains
subroutine p r i n t i t e m (lun , indx , data)

integer , intent (in) : : lun
integer , intent (in) : : indx
real , intent (in) : : data

write (lun , ’ (i5 , a , e14 . 5) ’) indx , ’ : ’ , data
end subroutine p r i n t i t e m
end module l i n k e d l i s t r e a l s

module l i n k e d l i s t m u l t i r e a l s
use template l i n k e d l i s t s , real , dimension (:) , allocatable => data type , &

l i n k e d l i s t m u l t i r e a l => l i n k e d l i s t d e f
contains
subroutine p r i n t i t e m (lun , indx , data)

integer , intent (in) : : lun
integer , intent (in) : : indx
real , dimension (:) , intent (in) : : data

8

write (lun , ’ (i5 , a , 5 e14 . 5 , / , (6 x , 5 e14 . 5)) ’) indx , ’ : ’ , data
end subroutine p r i n t i t e m
end module l i n k e d l i s t m u l t i r e a l s

program t e s t l i n k e d l i s t
use l i n k e d l i s t r e a l s
use l i n k e d l i s t m u l t i r e a l s

type (l i n k e d l i s t r e a l) : : my l i s t
type (l i n k e d l i s t m u l t i r e a l) : : m y l i s t a r r a y
integer : : i , j
real : : va lue
real , dimension (:) , allocatable : : array

do i = 1 ,10
value = 0 .1 ∗ i
ca l l myl i s t%add (value)

array = [(0 . 1 ∗ j , j = 1 , i)]
ca l l m y l i s t a r r a y%add (array)

enddo

open(20 , f i l e = ’ t e s t l i n k e d l i s t . out ’)
ca l l myl i s t%print (20)
ca l l m y l i s t a r r a y%print (20)

end program t e s t l i n k e d l i s t

9

	Introduction
	Proposed extension
	Details of the substitution
	Type names
	Placement of the "use_template" statement

	Type safety
	Contract details

	Reference implementation

