-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
167 lines (142 loc) · 6.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import numpy as np
import argparse
import time
import util
from engine import trainer
import os
parser = argparse.ArgumentParser()
parser.add_argument('--device',type=str,default='1',help='')
parser.add_argument('--data',type=str,default='data/PEMS08',help='data path')
parser.add_argument('--adjdata',type=str,default='data/PEMS08/adj_pems08.pkl',help='adj data path')
parser.add_argument('--seq_length',type=int,default=12,help='Input sequence length')
parser.add_argument('--num_for_predict',type=int,default=12,help='Forecast sequence length')
parser.add_argument('--nhid',type=int,default=64,help='Hidden layer dimensions')
parser.add_argument('--in_dim',type=int,default=1,help='inputs dimension')
parser.add_argument('--num_nodes',type=int,default=170,help='number of nodes')
parser.add_argument('--batch_size',type=int,default=32,help='batch size')
parser.add_argument('--learning_rate',type=float,default=1e-3,help='learning rate')
parser.add_argument('--epochs',type=int,default=200,help='') # 200
parser.add_argument('--print_every',type=int,default=100,help='Training print')
parser.add_argument('--save',type=str,default='./garage/PEMS08',help='save path')
parser.add_argument('--expid',type=int,default=1,help='experiment id')
parser.add_argument('--gcn_num',type=int,default=3,help='Number of gcn')
parser.add_argument('--layer_num',type=int,default=4,help='Number of layers')
parser.add_argument('--max_update_factor',type=int,default=1,help='max update factor')
args = parser.parse_args()
def setup_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
seed = 0
setup_seed(seed)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
def main():
adj_mx = util.load_adj(args.adjdata)
adj_mx = util.construct_adj(adj_mx,3).cuda()
dataloader = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size)
scaler = dataloader['scaler']
global_train_steps = dataloader['train_loader'].num_batch
print(args)
engine = trainer(scaler, args, adj_mx, global_train_steps)
print("start training...",flush=True)
his_loss =[]
val_time = []
train_time = []
for i in range(1,args.epochs+1):
train_loss = []
train_mae = []
train_mape = []
train_rmse = []
t1 = time.time()
dataloader['train_loader'].shuffle()
for iter, (x, y) in enumerate(dataloader['train_loader'].get_iterator()):
trainx = torch.Tensor(x).cuda()
trainx= trainx
trainy = torch.Tensor(y).cuda()
trainy = trainy
metrics = engine.train(trainx, trainy[:,:,:,0])
train_loss.append(metrics[0])
train_mae.append(metrics[1])
train_mape.append(metrics[2])
train_rmse.append(metrics[3])
engine.scheduler.step() #
if iter % args.print_every == 0 :
log = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAE: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}'
print(log.format(iter, train_loss[-1], train_mae[-1], train_mape[-1], train_rmse[-1]),flush=True)
t2 = time.time()
train_time.append(t2-t1)
# val
valid_loss = []
valid_mae = []
valid_mape = []
valid_rmse = []
s1 = time.time()
for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()):
testx = torch.Tensor(x).cuda()
testx = testx
testy = torch.Tensor(y).cuda()
testy = testy
metrics = engine.eval(testx, testy[:,:,:,0])
valid_loss.append(metrics[0])
valid_mae.append(metrics[1])
valid_mape.append(metrics[2])
valid_rmse.append(metrics[3])
s2 = time.time()
log = 'Epoch: {:03d}, Inference Time: {:.4f} secs'
print(log.format(i,(s2-s1)))
val_time.append(s2-s1)
mtrain_loss = np.mean(train_loss)
mtrain_mae = np.mean(train_mae)
mtrain_mape = np.mean(train_mape)
mtrain_rmse = np.mean(train_rmse)
mvalid_loss = np.mean(valid_loss)
mvalid_mae = np.mean(valid_mae)
mvalid_mape = np.mean(valid_mape)
mvalid_rmse = np.mean(valid_rmse)
his_loss.append(mvalid_loss)
log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAE: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, Valid Loss: {:.4f}, Valid MAE: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch'
print(log.format(i, mtrain_loss, mtrain_mae, mtrain_mape, mtrain_rmse, mvalid_loss, mvalid_mae, mvalid_mape, mvalid_rmse, (t2 - t1)),flush=True)
torch.save(engine.model.state_dict(), args.save+"_epoch_"+str(i)+"_"+str(round(mvalid_loss,2))+".pth")
print("Average Training Time: {:.4f} secs/epoch".format(np.mean(train_time)))
print("Average Inference Time: {:.4f} secs".format(np.mean(val_time)))
# test
bestid = np.argmin(his_loss)
engine.model.load_state_dict(torch.load(args.save+"_epoch_"+str(bestid+1)+"_"+str(round(his_loss[bestid],2))+".pth"))
outputs = []
realy = torch.Tensor(dataloader['y_test']).cuda()
realy = realy[:,:,:,0]
for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()):
testx = torch.Tensor(x).cuda()
testx = testx
with torch.no_grad():
preds = engine.model(testx)
outputs.append(preds.squeeze())
yhat = torch.cat(outputs,dim=0)
yhat = yhat[:realy.size(0),...]
print("Training finished")
print("The valid loss on best model is", str(round(his_loss[bestid],4)))
print("The epoch of the best model is:", str(bestid + 1))
amae = []
amape = []
armse = []
for i in range(12):
pred = scaler.inverse_transform(yhat[:,i,:])
real = realy[:,i,:]
metrics = util.metric(pred,real)
log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(i+1, metrics[0], metrics[1], metrics[2]))
amae.append(metrics[0])
amape.append(metrics[1])
armse.append(metrics[2])
log = 'On average over 12 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(np.mean(amae),np.mean(amape),np.mean(armse)))
torch.save(engine.model.state_dict(), args.save+"_exp"+str(args.expid)+"_best_"+str(round(his_loss[bestid],2))+".pth")
if __name__ == "__main__":
t1 = time.time()
main()
t2 = time.time()
torch.cuda.empty_cache()
print("Total time spent: {:.4f}".format(t2-t1))