-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
150 lines (129 loc) · 5.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
import numpy as np
import argparse
import time
import util
import os
from engine import trainer
parser = argparse.ArgumentParser()
parser.add_argument('--device',type=str,default='0',help='Graphics card')
parser.add_argument('--data',type=str,default='data/PEMS08',help='data path')
parser.add_argument('--input_dim',type=int,default=1,help='inputs dimension')
parser.add_argument('--time_length',type=int,default=12,help='Number of time frames')
parser.add_argument('--out_dim',type=int,default=12,help='Output dimension')
parser.add_argument('--batch_size',type=int,default=64,help='batch size')
parser.add_argument('--save',type=str,default='./garage/PEMS08',help='save path')
parser.add_argument('--nhid',type=int,default=64,help='Hidden layer channel dimension')
parser.add_argument('--learning_rate',type=float,default=0.01,help='learning rate')
parser.add_argument('--weight_decay',type=float,default=0.0002,help='weight decay rate')
parser.add_argument('--epochs',type=int,default=50,help='')
parser.add_argument('--print_every',type=int,default=20,help='')
parser.add_argument('--expid',type=int,default=1,help='experiment id')
parser.add_argument('--lr_decay_rate',type=int,default=0.6,help='')
parser.add_argument('--lr_step_size',type=int,default=10,help='')
parser.add_argument('--Flag',type=str,default="GRU",help='RNN/LSTM/GRU')
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
def setup_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
setup_seed(1)
def main():
dataloader = util.load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size)
scaler = dataloader['scaler']
print(args)
engine = trainer(args, scaler, args.Flag, args.input_dim, args.nhid ,args.out_dim, args.time_length)
print("start training...",flush=True)
his_loss =[]
val_time = []
train_time = []
for i in range(1,args.epochs+1):
train_loss = []
train_mape = []
train_rmse = []
t1 = time.time()
dataloader['train_loader'].shuffle()
for iter, (x, y) in enumerate(dataloader['train_loader'].get_iterator()):
trainx = torch.Tensor(x).cuda()
trainx= trainx.transpose(1, 3) # [64, 2, 207, 12]
trainy = torch.Tensor(y).cuda()
trainy = trainy.transpose(1, 3)
metrics = engine.train(trainx, trainy[:,0,:,:])
train_loss.append(metrics[0])
train_mape.append(metrics[1])
train_rmse.append(metrics[2])
if iter % args.print_every == 0 :
log = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}'
print(log.format(iter, train_loss[-1], train_mape[-1], train_rmse[-1]),flush=True)
t2 = time.time()
train_time.append(t2-t1)
engine.scheduler.step()
# valid
valid_loss = []
valid_mape = []
valid_rmse = []
s1 = time.time()
for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()):
testx = torch.Tensor(x).cuda()
testx = testx.transpose(1, 3)
testy = torch.Tensor(y).cuda()
testy = testy.transpose(1, 3)
metrics = engine.eval(testx, testy[:,0,:,:])
valid_loss.append(metrics[0])
valid_mape.append(metrics[1])
valid_rmse.append(metrics[2])
s2 = time.time()
log = 'Epoch: {:03d}, Inference Time: {:.4f} secs'
print(log.format(i,(s2-s1)))
val_time.append(s2-s1)
mtrain_loss = np.mean(train_loss)
mtrain_mape = np.mean(train_mape)
mtrain_rmse = np.mean(train_rmse)
mvalid_loss = np.mean(valid_loss)
mvalid_mape = np.mean(valid_mape)
mvalid_rmse = np.mean(valid_rmse)
his_loss.append(mvalid_loss)
log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, Valid Loss: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch'
print(log.format(i, mtrain_loss, mtrain_mape, mtrain_rmse, mvalid_loss, mvalid_mape, mvalid_rmse, (t2 - t1)),flush=True)
torch.save(engine.model.state_dict(), args.save+"_epoch_"+str(i)+"_"+str(round(mvalid_loss,2))+".pth")
print("Average Training Time: {:.4f} secs/epoch".format(np.mean(train_time)))
print("Average Inference Time: {:.4f} secs".format(np.mean(val_time)))
# test
bestid = np.argmin(his_loss)
engine.model.load_state_dict(torch.load(args.save+"_epoch_"+str(bestid+1)+"_"+str(round(his_loss[bestid],2))+".pth"))
engine.model.eval()
outputs = []
realy = torch.Tensor(dataloader['y_test']).cuda()
realy = realy.transpose(1,3)[:,0,:,:]
for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()):
testx = torch.Tensor(x).cuda()
testx = testx.transpose(1,3)
with torch.no_grad():
preds = engine.model(testx)
outputs.append(preds.squeeze())
yhat = torch.cat(outputs,dim=0)
yhat = yhat[:realy.size(0),...]
amae = []
amape = []
armse = []
for i in range(12):
pred = scaler.inverse_transform(yhat[:,:,i])
real = realy[:,:,i]
metrics = util.metric(pred,real)
log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(i+1, metrics[0], metrics[1], metrics[2]))
amae.append(metrics[0])
amape.append(metrics[1])
armse.append(metrics[2])
log = 'On average over 12 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(np.mean(amae),np.mean(amape),np.mean(armse)))
torch.save(engine.model.state_dict(), args.save+"_exp"+str(args.expid)+"_best_"+str(round(his_loss[bestid],2))+".pth")
if __name__ == "__main__":
t1 = time.time()
main()
t2 = time.time()
torch.cuda.empty_cache()
print("Total time spent: {:.4f}".format(t2-t1))