-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathsparse_temporal_memory.py
376 lines (310 loc) · 14.4 KB
/
sparse_temporal_memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import torch.nn as nn
import torch as T
from torch.autograd import Variable as var
import torch.nn.functional as F
import numpy as np
import math
from .util import *
import time
class SparseTemporalMemory(nn.Module):
def __init__(
self,
input_size,
mem_size=512,
cell_size=32,
independent_linears=True,
read_heads=4,
sparse_reads=4,
temporal_reads=4,
num_lists=None,
index_checks=32,
gpu_id=-1,
mem_gpu_id=-1
):
super(SparseTemporalMemory, self).__init__()
self.mem_size = mem_size
self.cell_size = cell_size
self.gpu_id = gpu_id
self.mem_gpu_id = mem_gpu_id
self.input_size = input_size
self.independent_linears = independent_linears
self.K = sparse_reads if self.mem_size > sparse_reads else self.mem_size
self.KL = temporal_reads if self.mem_size > temporal_reads else self.mem_size
self.read_heads = read_heads
self.num_lists = num_lists if num_lists is not None else int(self.mem_size / 100)
self.index_checks = index_checks
m = self.mem_size
w = self.cell_size
r = self.read_heads
# The visible memory size: (K * R read heads, forward and backward
# temporal reads of size KL and least used memory cell)
self.c = (r * self.K) + (self.KL * 2) + 1
if self.independent_linears:
self.read_query_transform = nn.Linear(self.input_size, w * r)
self.write_vector_transform = nn.Linear(self.input_size, w)
self.interpolation_gate_transform = nn.Linear(self.input_size, self.c)
self.write_gate_transform = nn.Linear(self.input_size, 1)
T.nn.init.orthogonal_(self.read_query_transform.weight)
T.nn.init.orthogonal_(self.write_vector_transform.weight)
T.nn.init.orthogonal_(self.interpolation_gate_transform.weight)
T.nn.init.orthogonal_(self.write_gate_transform.weight)
else:
self.interface_size = (r * w) + w + self.c + 1
self.interface_weights = nn.Linear(self.input_size, self.interface_size)
T.nn.init.orthogonal_(self.interface_weights.weight)
self.I = cuda(1 - T.eye(self.c).unsqueeze(0), gpu_id=self.gpu_id) # (1 * n * n)
self.δ = 0.005 # minimum usage
self.timestep = 0
self.mem_limit_reached = False
def rebuild_indexes(self, hidden, erase=False):
b = hidden['memory'].size(0)
# if indexes already exist, we reset them
if 'indexes' in hidden:
[x.reset() for x in hidden['indexes']]
else:
# create new indexes
try:
from .faiss_index import FAISSIndex
hidden['indexes'] = \
[FAISSIndex(cell_size=self.cell_size,
nr_cells=self.mem_size, K=self.K, num_lists=self.num_lists,
probes=self.index_checks, gpu_id=self.mem_gpu_id) for x in range(b)]
except Exception as e:
print("\nFalling back to FLANN (CPU). \nFor using faster, GPU based indexes, install FAISS: `conda install faiss-gpu -c pytorch`")
from .flann_index import FLANNIndex
hidden['indexes'] = \
[FLANNIndex(cell_size=self.cell_size,
nr_cells=self.mem_size, K=self.K, num_kdtrees=self.num_lists,
probes=self.index_checks, gpu_id=self.mem_gpu_id) for x in range(b)]
# add existing memory into indexes
pos = hidden['read_positions'].squeeze().data.cpu().numpy()
if not erase:
for n, i in enumerate(hidden['indexes']):
i.reset()
i.add(hidden['memory'][n], last=pos[n][-1])
else:
self.timestep = 0
self.mem_limit_reached = False
return hidden
def reset(self, batch_size=1, hidden=None, erase=True):
m = self.mem_size
w = self.cell_size
b = batch_size
r = self.read_heads
c = self.c
if hidden is None:
hidden = {
# warning can be a huge chunk of contiguous memory
'memory': cuda(T.zeros(b, m, w).fill_(δ), gpu_id=self.mem_gpu_id),
'visible_memory': cuda(T.zeros(b, c, w).fill_(δ), gpu_id=self.mem_gpu_id),
'link_matrix': cuda(T.zeros(b, m, self.KL * 2), gpu_id=self.gpu_id),
'rev_link_matrix': cuda(T.zeros(b, m, self.KL * 2), gpu_id=self.gpu_id),
'precedence': cuda(T.zeros(b, self.KL * 2).fill_(δ), gpu_id=self.gpu_id),
'read_weights': cuda(T.zeros(b, m).fill_(δ), gpu_id=self.gpu_id),
'write_weights': cuda(T.zeros(b, m).fill_(δ), gpu_id=self.gpu_id),
'read_vectors': cuda(T.zeros(b, r, w).fill_(δ), gpu_id=self.gpu_id),
'least_used_mem': cuda(T.zeros(b, 1).fill_(c + 1), gpu_id=self.gpu_id).long(),
'usage': cuda(T.zeros(b, m), gpu_id=self.gpu_id),
'read_positions': cuda(T.arange(0, c).expand(b, c), gpu_id=self.gpu_id).long()
}
hidden = self.rebuild_indexes(hidden, erase=True)
else:
hidden['memory'] = hidden['memory'].clone()
hidden['visible_memory'] = hidden['visible_memory'].clone()
hidden['link_matrix'] = hidden['link_matrix'].clone()
hidden['rev_link_matrix'] = hidden['link_matrix'].clone()
hidden['precedence'] = hidden['precedence'].clone()
hidden['read_weights'] = hidden['read_weights'].clone()
hidden['write_weights'] = hidden['write_weights'].clone()
hidden['read_vectors'] = hidden['read_vectors'].clone()
hidden['least_used_mem'] = hidden['least_used_mem'].clone()
hidden['usage'] = hidden['usage'].clone()
hidden['read_positions'] = hidden['read_positions'].clone()
hidden = self.rebuild_indexes(hidden, erase)
if erase:
hidden['memory'].data.fill_(δ)
hidden['visible_memory'].data.fill_(δ)
hidden['link_matrix'].data.zero_()
hidden['rev_link_matrix'].data.zero_()
hidden['precedence'].data.zero_()
hidden['read_weights'].data.fill_(δ)
hidden['write_weights'].data.fill_(δ)
hidden['read_vectors'].data.fill_(δ)
hidden['least_used_mem'].data.fill_(c + 1 + self.timestep)
hidden['usage'].data.fill_(0)
hidden['read_positions'] = cuda(
T.arange(self.timestep, c + self.timestep).expand(b, c), gpu_id=self.gpu_id).long()
return hidden
def write_into_sparse_memory(self, hidden):
visible_memory = hidden['visible_memory']
positions = hidden['read_positions']
(b, m, w) = hidden['memory'].size()
# update memory
hidden['memory'].scatter_(1, positions.unsqueeze(2).expand(b, self.c, w), visible_memory)
# non-differentiable operations
pos = positions.data.cpu().numpy()
for batch in range(b):
# update indexes
hidden['indexes'][batch].reset()
hidden['indexes'][batch].add(hidden['memory'][batch], last=(pos[batch][-1] if not self.mem_limit_reached else None))
mem_limit_reached = hidden['least_used_mem'][0].data.cpu().numpy()[0] >= self.mem_size - 1
self.mem_limit_reached = mem_limit_reached or self.mem_limit_reached
return hidden
def update_link_matrices(self, link_matrix, rev_link_matrix, write_weights, precedence, temporal_read_positions):
write_weights_i = write_weights.unsqueeze(2)
precedence_j = precedence.unsqueeze(1)
(b, m, k) = link_matrix.size()
I = cuda(T.eye(m, k).unsqueeze(0).expand((b, m, k)), gpu_id=self.gpu_id)
# since only KL*2 entries are kept non-zero sparse, create the dense version from the sparse one
precedence_dense = cuda(T.zeros(b, m), gpu_id=self.gpu_id)
precedence_dense.scatter_(1, temporal_read_positions, precedence)
precedence_dense_i = precedence_dense.unsqueeze(2)
temporal_write_weights_j = write_weights.gather(1, temporal_read_positions).unsqueeze(1)
link_matrix = (1 - write_weights_i) * link_matrix + write_weights_i * precedence_j
rev_link_matrix = (1 - temporal_write_weights_j) * rev_link_matrix + \
(temporal_write_weights_j * precedence_dense_i)
return link_matrix * I, rev_link_matrix * I
def update_precedence(self, precedence, write_weights):
return (1 - T.sum(write_weights, dim=-1, keepdim=True)) * precedence + write_weights
def write(self, interpolation_gate, write_vector, write_gate, hidden):
read_weights = hidden['read_weights'].gather(1, hidden['read_positions'])
# encourage read and write in the first timestep
if self.timestep == 1: read_weights = read_weights + 1
write_weights = hidden['write_weights'].gather(1, hidden['read_positions'])
hidden['usage'], I = self.update_usage(
hidden['read_positions'],
read_weights,
write_weights,
hidden['usage']
)
# either we write to previous read locations
x = interpolation_gate * read_weights
# or to a new location
y = (1 - interpolation_gate) * I
write_weights = write_gate * (x + y)
# store the write weights
hidden['write_weights'].scatter_(1, hidden['read_positions'], write_weights)
# erase matrix
erase_matrix = I.unsqueeze(2).expand(hidden['visible_memory'].size())
# write into memory
hidden['visible_memory'] = hidden['visible_memory'] * \
(1 - erase_matrix) + T.bmm(write_weights.unsqueeze(2), write_vector)
hidden = self.write_into_sparse_memory(hidden)
# update link_matrix and precedence
(b, c) = write_weights.size()
# update link matrix
temporal_read_positions = hidden['read_positions'][:, self.read_heads * self.K + 1:]
hidden['link_matrix'], hidden['rev_link_matrix'] = \
self.update_link_matrices(
hidden['link_matrix'],
hidden['rev_link_matrix'],
hidden['write_weights'],
hidden['precedence'],
temporal_read_positions
)
# update precedence vector
read_weights = hidden['read_weights'].gather(1, temporal_read_positions)
hidden['precedence'] = self.update_precedence(hidden['precedence'], read_weights)
# update least used memory cell
hidden['least_used_mem'] = T.topk(hidden['usage'], 1, dim=-1, largest=False)[1]
return hidden
def update_usage(self, read_positions, read_weights, write_weights, usage):
(b, _) = read_positions.size()
# usage is timesteps since a non-negligible memory access
u = (read_weights + write_weights > self.δ).float()
# usage before write
relevant_usages = usage.gather(1, read_positions)
# indicator of words with minimal memory usage
minusage = T.min(relevant_usages, -1, keepdim=True)[0]
minusage = minusage.expand(relevant_usages.size())
I = (relevant_usages == minusage).float()
# usage after write
relevant_usages = (self.timestep - relevant_usages) * u + relevant_usages * (1 - u)
usage.scatter_(1, read_positions, relevant_usages)
return usage, I
def directional_weightings(self, link_matrix, rev_link_matrix, temporal_read_weights):
f = T.bmm(link_matrix, temporal_read_weights.unsqueeze(2)).squeeze(2)
b = T.bmm(rev_link_matrix, temporal_read_weights.unsqueeze(2)).squeeze(2)
return f, b
def read_from_sparse_memory(self, memory, indexes, keys, least_used_mem, usage, forward, backward, prev_read_positions):
b = keys.size(0)
read_positions = []
# we search for k cells per read head
for batch in range(b):
distances, positions = indexes[batch].search(keys[batch])
read_positions.append(positions)
read_positions = T.stack(read_positions, 0)
# add least used mem to read positions
# TODO: explore possibility of reading co-locations or ranges and such
(b, r, k) = read_positions.size()
read_positions = var(read_positions).squeeze(1).view(b, -1)
# no gradient here
# temporal reads
(b, m, w) = memory.size()
# get the top KL entries
max_length = int(least_used_mem[0, 0].data.cpu().numpy()) if not self.mem_limit_reached else (m-1)
_, fp = T.topk(forward, self.KL, largest=True)
_, bp = T.topk(backward, self.KL, largest=True)
# differentiable ops
# append forward and backward read positions, might lead to duplicates
read_positions = T.cat([read_positions, fp, bp], 1)
read_positions = T.cat([read_positions, least_used_mem], 1)
read_positions = T.clamp(read_positions, 0, max_length)
visible_memory = memory.gather(1, read_positions.unsqueeze(2).expand(b, self.c, w))
read_weights = σ(θ(visible_memory, keys), 2)
read_vectors = T.bmm(read_weights, visible_memory)
read_weights = T.prod(read_weights, 1)
return read_vectors, read_positions, read_weights, visible_memory
def read(self, read_query, hidden):
# get forward and backward weights
temporal_read_positions = hidden['read_positions'][:, self.read_heads * self.K + 1:]
read_weights = hidden['read_weights'].gather(1, temporal_read_positions)
forward, backward = self.directional_weightings(hidden['link_matrix'], hidden['rev_link_matrix'], read_weights)
# sparse read
read_vectors, positions, read_weights, visible_memory = \
self.read_from_sparse_memory(
hidden['memory'],
hidden['indexes'],
read_query,
hidden['least_used_mem'],
hidden['usage'],
forward, backward,
hidden['read_positions']
)
hidden['read_positions'] = positions
hidden['read_weights'] = hidden['read_weights'].scatter_(1, positions, read_weights)
hidden['read_vectors'] = read_vectors
hidden['visible_memory'] = visible_memory
return hidden['read_vectors'], hidden
def forward(self, ξ, hidden):
t = time.time()
# ξ = ξ.detach()
m = self.mem_size
w = self.cell_size
r = self.read_heads
c = self.c
b = ξ.size()[0]
if self.independent_linears:
# r read keys (b * r * w)
read_query = self.read_query_transform(ξ).view(b, r, w)
# write key (b * 1 * w)
write_vector = self.write_vector_transform(ξ).view(b, 1, w)
# write vector (b * 1 * r)
interpolation_gate = T.sigmoid(self.interpolation_gate_transform(ξ)).view(b, c)
# write gate (b * 1)
write_gate = T.sigmoid(self.write_gate_transform(ξ).view(b, 1))
else:
ξ = self.interface_weights(ξ)
# r read keys (b * r * w)
read_query = ξ[:, :r * w].contiguous().view(b, r, w)
# write key (b * 1 * w)
write_vector = ξ[:, r * w: r * w + w].contiguous().view(b, 1, w)
# write vector (b * 1 * r)
interpolation_gate = T.sigmoid(ξ[:, r * w + w: r * w + w + c]).contiguous().view(b, c)
# write gate (b * 1)
write_gate = T.sigmoid(ξ[:, -1].contiguous()).unsqueeze(1).view(b, 1)
self.timestep += 1
hidden = self.write(interpolation_gate, write_vector, write_gate, hidden)
return self.read(read_query, hidden)