forked from OpenNMT/OpenNMT-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
478 lines (400 loc) · 19.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
from __future__ import division
import os
import onmt
import onmt.Markdown
import onmt.Models
import onmt.modules
import argparse
import torch
import torch.nn as nn
from torch import cuda
parser = argparse.ArgumentParser(description='train.py')
onmt.Markdown.add_md_help_argument(parser)
# Data options
parser.add_argument('-data', required=True,
help='Path to the *-train.pt file from preprocess.py')
parser.add_argument('-save_model', default='model',
help="""Model filename (the model will be saved as
<save_model>_epochN_PPL.pt where PPL is the
validation perplexity""")
parser.add_argument('-train_from_state_dict', default='', type=str,
help="""If training from a checkpoint then this is the
path to the pretrained model's state_dict.""")
parser.add_argument('-train_from', default='', type=str,
help="""If training from a checkpoint then this is the
path to the pretrained model.""")
# Model options
parser.add_argument('-layers', type=int, default=2,
help='Number of layers in the LSTM encoder/decoder')
parser.add_argument('-rnn_size', type=int, default=500,
help='Size of LSTM hidden states')
parser.add_argument('-word_vec_size', type=int, default=500,
help='Word embedding sizes')
parser.add_argument('-feat_vec_size', type=int, default=20,
help="""When using -feat_merge mlp, feature embedding
sizes will be set to this.""")
parser.add_argument('-feat_merge', type=str, default='concat',
choices=['concat', 'sum', 'mlp'],
help='Merge action for the features embeddings')
parser.add_argument('-feat_vec_exponent', type=float, default=0.7,
help="""When using -feat_merge concat, feature embedding
sizes will be set to N^feat_vec_exponent where N is the
number of values the feature takes.""")
parser.add_argument('-input_feed', type=int, default=0,
help="""Feed the context vector at each time step as
additional input (via concatenation with the word
embeddings) to the decoder.""")
parser.add_argument('-rnn_type', type=str, default='LSTM',
choices=['LSTM', 'GRU', 'DNC'],
help="""The gate type to use in the RNNs""")
# parser.add_argument('-residual', action="store_true",
# help="Add residual connections between RNN layers.")
parser.add_argument('-brnn', action='store_true',
help='Use a bidirectional encoder')
parser.add_argument('-brnn_merge', default='concat',
help="""Merge action for the bidirectional hidden states:
[concat|sum]""")
parser.add_argument('-copy_attn', action="store_true",
help='Train copy attention layer.')
parser.add_argument('-coverage_attn', action="store_true",
help='Train a coverage attention layer.')
parser.add_argument('-lambda_coverage', type=float, default=1,
help='Lambda value for coverage.')
parser.add_argument('-encoder_layer', type=str, default='rnn',
help="""Type of encoder layer to use.
Options: [rnn|mean|transformer]""")
parser.add_argument('-decoder_layer', type=str, default='rnn',
help='Type of decoder layer to use. [rnn|transformer]')
parser.add_argument('-context_gate', type=str, default=None,
choices=['source', 'target', 'both'],
help="""Type of context gate to use [source|target|both].
Do not select for no context gate.""")
parser.add_argument('-attention_type', type=str, default='general',
choices=['dot', 'general', 'mlp'],
help="""The attention type to use:
dotprot or general (Luong) or MLP (Bahdanau)""")
# Optimization options
parser.add_argument('-encoder_type', default='text',
help="Type of encoder to use. Options are [text|img].")
parser.add_argument('-batch_size', type=int, default=64,
help='Maximum batch size')
parser.add_argument('-max_generator_batches', type=int, default=32,
help="""Maximum batches of words in a sequence to run
the generator on in parallel. Higher is faster, but uses
more memory.""")
parser.add_argument('-epochs', type=int, default=13,
help='Number of training epochs')
parser.add_argument('-start_epoch', type=int, default=1,
help='The epoch from which to start')
parser.add_argument('-param_init', type=float, default=0.1,
help="""Parameters are initialized over uniform distribution
with support (-param_init, param_init).
Use 0 to not use initialization""")
parser.add_argument('-optim', default='sgd',
help="Optimization method. [sgd|adagrad|adadelta|adam|rmsprop]")
parser.add_argument('-max_grad_norm', type=float, default=5,
help="""If the norm of the gradient vector exceeds this,
renormalize it to have the norm equal to max_grad_norm""")
parser.add_argument('-dropout', type=float, default=0.3,
help='Dropout probability; applied between LSTM stacks.')
parser.add_argument('-memory_regularization', type=float, default=0.5,
help='Probability of passing through memory.')
parser.add_argument('-position_encoding', action='store_true',
help='Use a sinusoid to mark relative words positions.')
parser.add_argument('-share_decoder_embeddings', action='store_true',
help='Share the word and softmax embeddings for decoder.')
parser.add_argument('-curriculum', action="store_true",
help="""For this many epochs, order the minibatches based
on source sequence length. Sometimes setting this to 1 will
increase convergence speed.""")
parser.add_argument('-extra_shuffle', action="store_true",
help="""By default only shuffle mini-batch order; when true,
shuffle and re-assign mini-batches""")
parser.add_argument('-truncated_decoder', type=int, default=0,
help="""Truncated bptt.""")
# learning rate
parser.add_argument('-learning_rate', type=float, default=1.0,
help="""Starting learning rate. If adagrad/adadelta/adam is
used, then this is the global learning rate. Recommended
settings: sgd = 1, adagrad = 0.1,
adadelta = 1, adam = 0.001""")
parser.add_argument('-learning_rate_decay', type=float, default=0.75,
help="""If update_learning_rate, decay learning rate by
this much if (i) perplexity does not decrease on the
validation set or (ii) epoch has gone past
start_decay_at""")
parser.add_argument('-start_decay_at', type=int, default=8,
help="""Start decaying every epoch after and including this
epoch""")
parser.add_argument('-start_checkpoint_at', type=int, default=0,
help="""Start checkpointing every epoch after and including this
epoch""")
parser.add_argument('-decay_method', type=str, default="",
help="""Use a custom learning rate decay [|noam] """)
parser.add_argument('-warmup_steps', type=int, default=4000,
help="""Number of warmup steps for custom decay.""")
# pretrained word vectors
parser.add_argument('-pre_word_vecs_enc',
help="""If a valid path is specified, then this will load
pretrained word embeddings on the encoder side.
See README for specific formatting instructions.""")
parser.add_argument('-pre_word_vecs_dec',
help="""If a valid path is specified, then this will load
pretrained word embeddings on the decoder side.
See README for specific formatting instructions.""")
# GPU
parser.add_argument('-gpus', default=[], nargs='+', type=int,
help="Use CUDA on the listed devices.")
parser.add_argument('-log_interval', type=int, default=50,
help="Print stats at this interval.")
parser.add_argument('-log_server', type=str, default="",
help="Send logs to this crayon server.")
parser.add_argument('-experiment_name', type=str, default="",
help="Name of the experiment for logging.")
parser.add_argument('-seed', type=int, default=1111,
help="""Random seed used for the experiments
reproducibility.""")
# DNC arguments
parser.add_argument('-nr_cells', type=int, default=4, help='Number of memory cells of the DNC')
parser.add_argument('-read_heads', type=int, default=4, help='Number of read heads of the DNC')
parser.add_argument('-cell_size', type=int, default=500, help='Cell sizes of DNC')
opt = parser.parse_args()
print(opt)
if opt.seed > 0:
torch.manual_seed(opt.seed)
if torch.cuda.is_available() and not opt.gpus:
print("WARNING: You have a CUDA device, should run with -gpus 0")
if opt.gpus:
cuda.set_device(opt.gpus[0])
if opt.seed > 0:
torch.cuda.manual_seed(opt.seed)
# Set up the Crayon logging server.
if opt.log_server != "":
from pycrayon import CrayonClient
cc = CrayonClient(hostname=opt.log_server)
experiments = cc.get_experiment_names()
print(experiments)
if opt.experiment_name in experiments:
cc.remove_experiment(opt.experiment_name)
experiment = cc.create_experiment(opt.experiment_name)
def eval(model, criterion, data):
stats = onmt.Loss.Statistics()
model.eval()
loss = onmt.Loss.MemoryEfficientLoss(opt, model.generator, criterion,
eval=True, copy_loss=opt.copy_attn)
for i in range(len(data)):
batch = data[i]
outputs, attn, dec_hidden = model(batch.src, batch.tgt, batch.lengths)
batch_stats, _, _ = loss.loss(batch, outputs, attn)
stats.update(batch_stats)
model.train()
return stats
def trainModel(model, trainData, validData, dataset, optim):
model.train()
# Define criterion of each GPU.
if not opt.copy_attn:
criterion = onmt.Loss.NMTCriterion(dataset['dicts']['tgt'].size(), opt)
else:
criterion = onmt.modules.CopyCriterion
def trainEpoch(epoch):
if opt.extra_shuffle and epoch > opt.curriculum:
trainData.shuffle()
mem_loss = onmt.Loss.MemoryEfficientLoss(opt, model.generator,
criterion,
copy_loss=opt.copy_attn)
# Shuffle mini batch order.
batchOrder = torch.randperm(len(trainData))
total_stats = onmt.Loss.Statistics()
report_stats = onmt.Loss.Statistics()
for i in range(len(trainData)):
batchIdx = batchOrder[i] if epoch > opt.curriculum else i
batch = trainData[batchIdx]
target_size = batch.tgt.size(0)
dec_state = None
trunc_size = opt.truncated_decoder if opt.truncated_decoder \
else target_size
for j in range(0, target_size-1, trunc_size):
trunc_batch = batch.truncate(j, j + trunc_size)
# Main training loop
model.zero_grad()
outputs, attn, dec_state = model(trunc_batch.src,
trunc_batch.tgt,
trunc_batch.lengths,
dec_state)
batch_stats, inputs, grads \
= mem_loss.loss(trunc_batch, outputs, attn)
torch.autograd.backward(inputs, grads)
# Update the parameters.
optim.step()
total_stats.update(batch_stats)
report_stats.update(batch_stats)
if dec_state is not None:
dec_state.detach()
report_stats.n_src_words += batch.lengths.data.sum()
if i % opt.log_interval == -1 % opt.log_interval:
report_stats.output(epoch, i+1, len(trainData),
total_stats.start_time)
if opt.log_server:
report_stats.log("progress", experiment, optim)
report_stats = onmt.Loss.Statistics()
return total_stats
for epoch in range(opt.start_epoch, opt.epochs + 1):
print('')
# (1) train for one epoch on the training set
train_stats = trainEpoch(epoch)
print('Train perplexity: %g' % train_stats.ppl())
print('Train accuracy: %g' % train_stats.accuracy())
# (2) evaluate on the validation set
valid_stats = eval(model, criterion, validData)
print('Validation perplexity: %g' % valid_stats.ppl())
print('Validation accuracy: %g' % valid_stats.accuracy())
# Log to remote server.
if opt.log_server:
train_stats.log("train", experiment, optim)
valid_stats.log("valid", experiment, optim)
# (3) update the learning rate
optim.updateLearningRate(valid_stats.ppl(), epoch)
model_state_dict = (model.module.state_dict() if len(opt.gpus) > 1
else model.state_dict())
model_state_dict = {k: v for k, v in model_state_dict.items()
if 'generator' not in k}
generator_state_dict = (model.generator.module.state_dict()
if len(opt.gpus) > 1
else model.generator.state_dict())
# (4) drop a checkpoint
if epoch >= opt.start_checkpoint_at:
checkpoint = {
'model': model_state_dict,
'generator': generator_state_dict,
'dicts': dataset['dicts'],
'opt': opt,
'epoch': epoch,
'optim': optim
}
torch.save(checkpoint,
'%s_acc_%.2f_ppl_%.2f_e%d.pt'
% (opt.save_model, valid_stats.accuracy(),
valid_stats.ppl(), epoch))
def check_model_path():
save_model_path = os.path.abspath(opt.save_model)
model_dirname = os.path.dirname(save_model_path)
if not os.path.exists(model_dirname):
os.makedirs(model_dirname)
def main():
print("Loading data from '%s'" % opt.data)
dataset = torch.load(opt.data)
dict_checkpoint = (opt.train_from if opt.train_from
else opt.train_from_state_dict)
if dict_checkpoint:
print('Loading dicts from checkpoint at %s' % dict_checkpoint)
checkpoint = torch.load(dict_checkpoint,
map_location=lambda storage, loc: storage)
dataset['dicts'] = checkpoint['dicts']
trainData = onmt.Dataset(dataset['train']['src'],
dataset['train']['tgt'], opt.batch_size, opt.gpus,
data_type=dataset.get("type", "text"),
srcFeatures=dataset['train'].get('src_features'),
tgtFeatures=dataset['train'].get('tgt_features'),
alignment=dataset['train'].get('alignments'))
validData = onmt.Dataset(dataset['valid']['src'],
dataset['valid']['tgt'], opt.batch_size, opt.gpus,
volatile=True,
data_type=dataset.get("type", "text"),
srcFeatures=dataset['valid'].get('src_features'),
tgtFeatures=dataset['valid'].get('tgt_features'),
alignment=dataset['valid'].get('alignments'))
dicts = dataset['dicts']
print(' * vocabulary size. source = %d; target = %d' %
(dicts['src'].size(), dicts['tgt'].size()))
if 'src_features' in dicts:
for j in range(len(dicts['src_features'])):
print(' * src feature %d size = %d' %
(j, dicts['src_features'][j].size()))
dicts = dataset['dicts']
print(' * number of training sentences. %d' %
len(dataset['train']['src']))
print(' * maximum batch size. %d' % opt.batch_size)
print('Building model...')
if opt.encoder_type == "text":
encoder = onmt.Models.Encoder(opt, dicts['src'],
dicts.get('src_features', None))
elif opt.encoder_type == "img":
encoder = onmt.modules.ImageEncoder(opt)
assert("type" not in dataset or dataset["type"] == "img")
else:
print("Unsupported encoder type %s" % (opt.encoder_type))
decoder = onmt.Models.Decoder(opt, dicts['tgt'])
if opt.copy_attn:
generator = onmt.modules.CopyGenerator(opt, dicts['src'], dicts['tgt'])
else:
generator = nn.Sequential(
nn.Linear(opt.rnn_size, dicts['tgt'].size()),
nn.LogSoftmax())
if opt.share_decoder_embeddings:
generator[0].weight = decoder.embeddings.word_lut.weight
model = onmt.Models.NMTModel(encoder, decoder, opt, len(opt.gpus) > 1)
if opt.train_from:
print('Loading model from checkpoint at %s' % opt.train_from)
chk_model = checkpoint['model']
generator_state_dict = chk_model.generator.state_dict()
model_state_dict = {k: v for k, v in chk_model.state_dict().items()
if 'generator' not in k}
model.load_state_dict(model_state_dict)
generator.load_state_dict(generator_state_dict)
opt.start_epoch = checkpoint['epoch'] + 1
if opt.train_from_state_dict:
print('Loading model from checkpoint at %s'
% opt.train_from_state_dict)
model.load_state_dict(checkpoint['model'])
generator.load_state_dict(checkpoint['generator'])
opt.start_epoch = checkpoint['epoch'] + 1
if len(opt.gpus) >= 1:
model.cuda()
generator.cuda()
else:
model.cpu()
generator.cpu()
if len(opt.gpus) > 1:
print('Multi gpu training ', opt.gpus)
model = nn.DataParallel(model, device_ids=opt.gpus, dim=1)
generator = nn.DataParallel(generator, device_ids=opt.gpus, dim=0)
model.generator = generator
if not opt.train_from_state_dict and not opt.train_from:
if opt.param_init != 0.0:
print('Intializing params')
for p in model.parameters():
p.data.uniform_(-opt.param_init, opt.param_init)
encoder.embeddings.load_pretrained_vectors(opt.pre_word_vecs_enc)
decoder.embeddings.load_pretrained_vectors(opt.pre_word_vecs_dec)
optim = onmt.Optim(
opt.optim, opt.learning_rate, opt.max_grad_norm,
lr_decay=opt.learning_rate_decay,
start_decay_at=opt.start_decay_at,
opt=opt
)
else:
print('Loading optimizer from checkpoint:')
optim = checkpoint['optim']
print(optim)
optim.set_parameters(model.parameters())
if opt.train_from or opt.train_from_state_dict:
optim.optimizer.load_state_dict(
checkpoint['optim'].optimizer.state_dict())
nParams = sum([p.nelement() for p in model.parameters()])
print('* number of parameters: %d' % nParams)
enc = 0
dec = 0
for name, param in model.named_parameters():
if 'encoder' in name:
enc += param.nelement()
elif 'decoder' in name:
dec += param.nelement()
else:
print(name, param.nelement())
print('encoder: ', enc)
print('decoder: ', dec)
check_model_path()
print(model)
trainModel(model, trainData, validData, dataset, optim)
if __name__ == "__main__":
main()