-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathpacknet_imagenet_main.py
368 lines (312 loc) · 14.9 KB
/
packnet_imagenet_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
"""Main entry point for doing all stuff."""
import argparse
import json
import warnings
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.utils.model_zoo as model_zoo
from torch.nn.parameter import Parameter
import os
import sys
import pdb
import math
from tqdm import tqdm
import numpy as np
import utils
from utils import Optimizers
from utils.packnet_manager import Manager
import utils.fine_grained_dataset as dataset
import packnet_models
model_urls = {
'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
# To prevent PIL warnings.
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument('--arch', type=str, default='vgg16_bn',
help='Architectures')
parser.add_argument('--num_classes', type=int, default=-1,
help='Num outputs for dataset')
# Optimization options.
parser.add_argument('--lr', type=float, default=0.1,
help='Learning rate for parameters, used for baselines')
parser.add_argument('--batch_size', type=int, default=32,
help='input batch size for training')
parser.add_argument('--val_batch_size', type=int, default=100,
help='input batch size for validation')
parser.add_argument('--workers', type=int, default=24, help='')
parser.add_argument('--weight_decay', type=float, default=4e-5,
help='Weight decay')
# Paths.
parser.add_argument('--dataset', type=str, default='',
help='Name of dataset')
parser.add_argument('--train_path', type=str, default='',
help='Location of train data')
parser.add_argument('--val_path', type=str, default='',
help='Location of test data')
# Other.
parser.add_argument('--cuda', action='store_true', default=True,
help='use CUDA')
parser.add_argument('--seed', type=int, default=1, help='random seed')
parser.add_argument('--checkpoint_format', type=str,
default='./{save_folder}/checkpoint-{epoch}.pth.tar',
help='checkpoint file format')
parser.add_argument('--epochs', type=int, default=160,
help='number of epochs to train')
parser.add_argument('--restore_epoch', type=int, default=0, help='')
parser.add_argument('--save_folder', type=str,
help='folder name inside one_check folder')
parser.add_argument('--load_folder', default='', help='')
parser.add_argument('--one_shot_prune_perc', type=float, default=0.5,
help='% of neurons to prune per layer')
parser.add_argument('--mode',
choices=['finetune', 'prune', 'inference'],
help='Run mode')
parser.add_argument('--logfile', type=str, help='file to save baseline accuracy')
parser.add_argument('--use_imagenet_pretrained', action='store_true', default=False,
help='')
parser.add_argument('--jsonfile', type=str, help='file to restore baseline validation accuracy')
def main():
"""Do stuff."""
args = parser.parse_args()
if args.save_folder and not os.path.isdir(args.save_folder):
os.makedirs(args.save_folder)
if not torch.cuda.is_available():
logging.info('no gpu device available')
args.cuda = False
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
cudnn.benchmark = True
# If set > 0, will resume training from a given checkpoint.
resume_from_epoch = 0
resume_folder = args.load_folder
for try_epoch in range(200, 0, -1):
if os.path.exists(args.checkpoint_format.format(
save_folder=resume_folder, epoch=try_epoch)):
resume_from_epoch = try_epoch
break
if args.restore_epoch:
resume_from_epoch = args.restore_epoch
# Set default train and test path if not provided as input.
utils.set_dataset_paths(args)
if resume_from_epoch:
filepath = args.checkpoint_format.format(save_folder=resume_folder, epoch=resume_from_epoch)
checkpoint = torch.load(filepath)
checkpoint_keys = checkpoint.keys()
dataset_history = checkpoint['dataset_history']
dataset2num_classes = checkpoint['dataset2num_classes']
masks = checkpoint['masks']
if 'shared_layer_info' in checkpoint_keys:
shared_layer_info = checkpoint['shared_layer_info']
else:
shared_layer_info = {}
else:
dataset_history = []
dataset2num_classes = {}
masks = {}
shared_layer_info = {}
if args.arch == 'resnet50':
model = packnet_models.__dict__[args.arch](dataset_history=dataset_history, dataset2num_classes=dataset2num_classes)
elif 'vgg' in args.arch:
model = packnet_models.__dict__[args.arch](pretrained=args.use_imagenet_pretrained, dataset_history=dataset_history, dataset2num_classes=dataset2num_classes)
else:
print('Error!')
sys.exit(0)
# Add and set the model dataset
model.add_dataset(args.dataset, args.num_classes)
model.set_dataset(args.dataset)
# Move model to GPU
model = nn.DataParallel(model)
model = model.cuda()
# For datasets whose image_size is 224 and also the first task
if args.use_imagenet_pretrained and model.module.datasets.index(args.dataset) == 0:
curr_model_state_dict = model.state_dict()
if args.arch == 'vgg16_bn':
state_dict = model_zoo.load_url(model_urls['vgg16_bn'])
curr_model_state_dict = model.state_dict()
for name, param in state_dict.items():
if 'classifier' not in name:
curr_model_state_dict['module.' + name].copy_(param)
curr_model_state_dict['module.features.45.weight'].copy_(state_dict['classifier.0.weight'])
curr_model_state_dict['module.features.45.bias'].copy_(state_dict['classifier.0.bias'])
curr_model_state_dict['module.features.48.weight'].copy_(state_dict['classifier.3.weight'])
curr_model_state_dict['module.features.48.bias'].copy_(state_dict['classifier.3.bias'])
if args.dataset == 'imagenet':
curr_model_state_dict['module.classifiers.0.weight'].copy_(state_dict['classifier.6.weight'])
curr_model_state_dict['module.classifiers.0.bias'].copy_(state_dict['classifier.6.bias'])
elif args.arch == 'resnet50':
state_dict = model_zoo.load_url(model_urls['resnet50'])
for name, param in state_dict.items():
if 'fc' not in name:
curr_model_state_dict['module.' + name].copy_(param)
if args.dataset == 'imagenet':
curr_model_state_dict['module.classifiers.0.weight'].copy_(state_dict['fc.weight'])
curr_model_state_dict['module.classifiers.0.bias'].copy_(state_dict['fc.bias'])
else:
print("Currently, we didn't define the mapping of {} between imagenet pretrained weight and our model".format(args.arch))
sys.exit(5)
if not masks:
for name, module in model.named_modules():
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear):
if 'classifiers' in name:
continue
mask = torch.ByteTensor(module.weight.data.size()).fill_(0)
if 'cuda' in module.weight.data.type():
mask = mask.cuda()
masks[name] = mask
if args.dataset not in shared_layer_info:
shared_layer_info[args.dataset] = {
'conv_bias': {},
'bn_layer_running_mean': {},
'bn_layer_running_var': {},
'bn_layer_weight': {},
'bn_layer_bias': {},
'fc_bias': {}
}
if 'cropped' in args.dataset:
train_loader = dataset.train_loader_cropped(args.train_path, args.batch_size)
val_loader = dataset.val_loader_cropped(args.val_path, args.val_batch_size)
else:
train_loader = dataset.train_loader(args.train_path, args.batch_size)
val_loader = dataset.val_loader(args.val_path, args.val_batch_size)
# if we are going to save checkpoint in other folder, then we recalculate the starting epoch
if args.save_folder != args.load_folder:
start_epoch = 0
else:
start_epoch = resume_from_epoch
manager = Manager(args, model, shared_layer_info, masks, train_loader, val_loader)
if args.mode == 'inference':
manager.load_checkpoint_for_inference(resume_from_epoch, resume_folder)
manager.validate(resume_from_epoch-1)
return
lr = args.lr
# update all layers
named_params = dict(model.named_parameters())
params_to_optimize_via_SGD = []
named_of_params_to_optimize_via_SGD = []
for name, param in named_params.items():
if 'classifiers' in name:
if '.{}.'.format(model.module.datasets.index(args.dataset)) in name:
params_to_optimize_via_SGD.append(param)
named_of_params_to_optimize_via_SGD.append(name)
continue
else:
params_to_optimize_via_SGD.append(param)
named_of_params_to_optimize_via_SGD.append(name)
# here we must set weight decay to 0.0,
# because the weight decay strategy in build-in step() function will change every weight elem in the tensor,
# which will hurt previous tasks' accuracy. (Instead, we do weight decay ourself in the `prune.py`)
optimizer_network = optim.SGD(params_to_optimize_via_SGD, lr=lr,
weight_decay=0.0, momentum=0.9, nesterov=True)
optimizers = Optimizers()
optimizers.add(optimizer_network, lr)
manager.load_checkpoint(optimizers, resume_from_epoch, resume_folder)
"""Performs training."""
curr_lrs = []
for optimizer in optimizers:
for param_group in optimizer.param_groups:
curr_lrs.append(param_group['lr'])
break
if start_epoch != 0:
curr_best_accuracy = manager.validate(start_epoch-1)
elif args.mode == 'prune':
print()
print('Sparsity ratio: {}'.format(args.one_shot_prune_perc))
print('Before pruning: ')
with open(args.jsonfile, 'r') as jsonfile:
json_data = json.load(jsonfile)
baseline_acc = float(json_data[args.dataset])
# baseline_acc = manager.validate(start_epoch-1)
print('Execute one shot pruning ...')
manager.one_shot_prune(args.one_shot_prune_perc)
else:
curr_best_accuracy = 0.0
if args.mode == 'finetune':
manager.pruner.make_finetuning_mask()
if args.dataset == 'imagenet':
avg_val_acc = manager.validate(0)
manager.save_checkpoint(optimizers, 0, args.save_folder)
if args.logfile:
json_data = {}
if os.path.isfile(args.logfile):
with open(args.logfile) as json_file:
json_data = json.load(json_file)
json_data[args.dataset] = '{:.4f}'.format(avg_val_acc)
with open(args.logfile, 'w') as json_file:
json.dump(json_data, json_file)
return
history_best_val_acc = 0.0
num_epochs_that_criterion_does_not_get_better = 0
times_of_decaying_learning_rate = 0
for epoch_idx in range(start_epoch, args.epochs):
avg_train_acc = manager.train(optimizers, epoch_idx, curr_lrs)
avg_val_acc = manager.validate(epoch_idx)
if args.mode == 'finetune':
if avg_val_acc > history_best_val_acc:
num_epochs_that_criterion_does_not_get_better = 0
history_best_val_acc = avg_val_acc
if args.save_folder is not None:
paths = os.listdir(args.save_folder)
if paths and '.pth.tar' in paths[0]:
for checkpoint_file in paths:
os.remove(os.path.join(args.save_folder, checkpoint_file))
else:
print('Something is wrong! Block the program with pdb')
pdb.set_trace()
manager.save_checkpoint(optimizers, epoch_idx, args.save_folder)
if args.logfile:
json_data = {}
if os.path.isfile(args.logfile):
with open(args.logfile) as json_file:
json_data = json.load(json_file)
json_data[args.dataset] = '{:.4f}'.format(avg_val_acc)
with open(args.logfile, 'w') as json_file:
json.dump(json_data, json_file)
else:
num_epochs_that_criterion_does_not_get_better += 1
if times_of_decaying_learning_rate >= 3:
print()
print("times_of_decaying_learning_rate reach {}, stop training".format(
times_of_decaying_learning_rate))
break
if num_epochs_that_criterion_does_not_get_better >= 10:
times_of_decaying_learning_rate += 1
num_epochs_that_criterion_does_not_get_better = 0
for param_group in optimizers[0].param_groups:
param_group['lr'] *= 0.1
curr_lrs[0] = param_group['lr']
print()
print("continously {} epochs doesn't get higher acc, "
"decay learning rate by multiplying 0.1".format(
num_epochs_that_criterion_does_not_get_better))
if args.mode == 'prune':
if epoch_idx + 1 == 40:
for param_group in optimizers[0].param_groups:
param_group['lr'] *= 0.1
curr_lrs[0] = param_group['lr']
if args.mode == 'prune':
if avg_train_acc > 0.97 and (avg_val_acc - baseline_acc) >= -0.01:
manager.save_checkpoint(optimizers, epoch_idx, args.save_folder)
else:
print('Pruning too much!')
elif args.mode == 'finetune':
if avg_train_acc < 0.97:
print('Cannot prune any more!')
print('-' * 16)
if __name__ == '__main__':
main()