-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexec.py
240 lines (202 loc) · 11.6 KB
/
exec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/usr/bin/env python
# Official implementation code for "Lung Nodule Detection and Classification from Thorax CT-Scan Using RetinaNet with Transfer Learning" and "Lung Nodule Texture Detection and Classification Using 3D CNN."
# Adapted from of [medicaldetectiontoolkit](https://github.com/pfjaeger/medicaldetectiontoolkit) and [kinetics_i3d_pytorch](https://github.com/hassony2/kinetics_i3d_pytorch)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""execution script."""
import argparse
import os
import time
import torch
import utils.exp_utils as utils
from evaluator import Evaluator
from predictor import Predictor
from plotting import plot_batch_prediction
# from apex import amp
def train(logger):
"""
perform the training routine for a given fold. saves plots and selected parameters to the experiment dir
specified in the configs.
"""
logger.info('performing training in {}D over fold {} on experiment {} with model {}'.format(
cf.dim, cf.fold, cf.exp_dir, cf.model))
net = model.net(cf, logger).cuda()
optimizer = torch.optim.Adam(net.parameters(), lr=cf.learning_rate[0], weight_decay=cf.weight_decay)
# lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience =10)
# net, optimizer = amp.initialize(net, optimizer, opt_level="O1")
model_selector = utils.ModelSelector(cf, logger)
train_evaluator = Evaluator(cf, logger, mode='train')
val_evaluator = Evaluator(cf, logger, mode=cf.val_mode)
starting_epoch = 1
if cf.resume_to_checkpoint:
starting_epoch = utils.load_checkpoint(cf.resume_to_checkpoint, net, optimizer)
logger.info('resumed to checkpoint {} at epoch {}'.format(cf.resume_to_checkpoint, starting_epoch))
if cf.rgb_weights_path:
success_notif, net = utils.load_rgb_weight(cf.rgb_weights_path, net)
logger.info('Using RGB I3D weights from {}-- STATUS {}'.format(cf.rgb_weights_path, success_notif))
# prepare monitoring
monitor_metrics, TrainingPlot = utils.prepare_monitoring(cf)
logger.info('loading dataset and initializing batch generators...')
batch_gen = data_loader.get_train_generators(cf, logger)
for epoch in range(starting_epoch, cf.num_epochs + 1):
logger.info('starting training epoch {}'.format(epoch))
for param_group in optimizer.param_groups:
param_group['lr'] = cf.learning_rate[epoch - 1]
start_time = time.time()
net.train()
train_results_list = []
for bix in range(cf.num_train_batches):
batch = next(batch_gen['train'])
tic_fw = time.time()
results_dict = net.train_forward(batch)
tic_bw = time.time()
optimizer.zero_grad()
results_dict['torch_loss'].backward()
optimizer.step()
logger.info('tr. batch {0}/{1} (ep. {2}) fw {3:.3f}s / bw {4:.3f}s / total {5:.3f}s || '
.format(bix + 1, cf.num_train_batches, epoch, tic_bw - tic_fw,
time.time() - tic_bw, time.time() - tic_fw) + results_dict['logger_string'])
train_results_list.append([results_dict['boxes'], batch['pid']])
monitor_metrics['train']['monitor_values'][epoch].append(results_dict['monitor_values'])
_, monitor_metrics['train'] = train_evaluator.evaluate_predictions(train_results_list, monitor_metrics['train'])
train_time = time.time() - start_time
logger.info('starting validation in mode {}.'.format(cf.val_mode))
with torch.no_grad():
net.eval()
if cf.do_validation:
val_results_list = []
val_predictor = Predictor(cf, net, logger, mode='val')
for _ in range(batch_gen['n_val']):
batch = next(batch_gen[cf.val_mode])
if cf.val_mode == 'val_patient':
results_dict = val_predictor.predict_patient(batch)
elif cf.val_mode == 'val_sampling':
results_dict = net.train_forward(batch, is_validation=True)
val_results_list.append([results_dict['boxes'], batch['pid']])
monitor_metrics['val']['monitor_values'][epoch].append(results_dict['monitor_values'])
_, monitor_metrics['val'] = val_evaluator.evaluate_predictions(val_results_list, monitor_metrics['val'])
model_selector.run_model_selection(net, optimizer, monitor_metrics, epoch)
# val_loss=results_dict['torch_loss']
# lr_scheduler.step(val_loss)
# update monitoring and prediction plots
TrainingPlot.update_and_save(monitor_metrics, epoch)
epoch_time = time.time() - start_time
logger.info('trained epoch {}: took {} sec. ({} train / {} val)'.format(
epoch, epoch_time, train_time, epoch_time-train_time))
batch = next(batch_gen['val_sampling'])
results_dict = net.train_forward(batch, is_validation=True)
logger.info('plotting predictions from validation sampling.')
plot_batch_prediction(batch, results_dict, cf)
def test(logger):
"""
perform testing for a given fold (or hold out set). save stats in evaluator.
"""
logger.info('starting testing model of fold {} in exp {}'.format(cf.fold, cf.exp_dir))
net = model.net(cf, logger).cuda()
test_predictor = Predictor(cf, net, logger, mode='test')
test_evaluator = Evaluator(cf, logger, mode='test')
batch_gen = data_loader.get_test_generator(cf, logger)
test_results_list = test_predictor.predict_test_set(batch_gen, return_results=True)
test_evaluator.evaluate_predictions(test_results_list)
test_evaluator.score_test_df()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default='train_test',
help='one out of: train / test / train_test / analysis / create_exp')
parser.add_argument('--folds', nargs='+', type=int, default=None,
help='None runs over all folds in CV. otherwise specify list of folds.')
parser.add_argument('--exp_dir', type=str, default='/path/to/experiment/directory',
help='path to experiment dir. will be created if non existent.')
parser.add_argument('--server_env', default=False, action='store_true',
help='change IO settings to deploy models on a cluster.')
parser.add_argument('--slurm_job_id', type=str, default=None, help='job scheduler info')
parser.add_argument('--use_stored_settings', default=False, action='store_true',
help='load configs from existing exp_dir instead of source dir. always done for testing, '
'but can be set to true to do the same for training. useful in job scheduler environment, '
'where source code might change before the job actually runs.')
parser.add_argument('--resume_to_checkpoint', type=str, default=None,
help='if resuming to checkpoint, the desired fold still needs to be parsed via --folds.')
parser.add_argument('--exp_source', type=str, default='experiments/toy_exp',
help='specifies, from which source experiment to load configs and data_loader.')
parser.add_argument('--rgb_weights_path', type=str, default=None, help='Path to rgb model state_dict')
args = parser.parse_args()
folds = args.folds
resume_to_checkpoint = args.resume_to_checkpoint
rgb_weights_path = args.rgb_weights_path
if args.mode == 'train' or args.mode == 'train_test':
cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, args.use_stored_settings)
cf.slurm_job_id = args.slurm_job_id
# ############# ADDED RGB WEIGHTS PATH #################
# if args.rgb_weights_path:
# cf.rgb_weights_path = rgb_weights_path
# print('Using RGB I3D weights from '+str(cf.rgb_weights_path))
# ######################################################
model = utils.import_module('model', cf.model_path)
data_loader = utils.import_module('dl', os.path.join(args.exp_source, 'data_loader.py'))
if folds is None:
folds = range(cf.n_cv_splits)
for fold in folds:
cf.fold_dir = os.path.join(cf.exp_dir, 'fold_{}'.format(fold))
cf.fold = fold
cf.resume_to_checkpoint = resume_to_checkpoint
cf.rgb_weights_path = rgb_weights_path
if not os.path.exists(cf.fold_dir):
os.mkdir(cf.fold_dir)
logger = utils.get_logger(cf.fold_dir)
train(logger)
cf.resume_to_checkpoint = None
cf.rgb_weights_path = None
if args.mode == 'train_test':
test(logger)
elif args.mode == 'test':
cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, is_training=False, use_stored_settings=True)
cf.slurm_job_id = args.slurm_job_id
model = utils.import_module('model', cf.model_path)
data_loader = utils.import_module('dl', os.path.join(args.exp_source, 'data_loader.py'))
if folds is None:
folds = range(cf.n_cv_splits)
for fold in folds:
cf.fold_dir = os.path.join(cf.exp_dir, 'fold_{}'.format(fold))
logger = utils.get_logger(cf.fold_dir)
cf.fold = fold
test(logger)
# load raw predictions saved by predictor during testing, run aggregation algorithms and evaluation.
elif args.mode == 'analysis':
cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, is_training=False, use_stored_settings=True)
logger = utils.get_logger(cf.exp_dir)
if cf.hold_out_test_set:
cf.folds = args.folds
predictor = Predictor(cf, net=None, logger=logger, mode='analysis')
results_list = predictor.load_saved_predictions(apply_wbc=True)
utils.create_csv_output(cf, logger, results_list)
else:
if folds is None:
folds = range(cf.n_cv_splits)
for fold in folds:
cf.fold_dir = os.path.join(cf.exp_dir, 'fold_{}'.format(fold))
cf.fold = fold
predictor = Predictor(cf, net=None, logger=logger, mode='analysis')
results_list = predictor.load_saved_predictions(apply_wbc=True)
logger.info('starting evaluation...')
evaluator = Evaluator(cf, logger, mode='test')
evaluator.evaluate_predictions(results_list)
evaluator.score_test_df()
# create experiment folder and copy scripts without starting job.
# usefull for cloud deployment where configs might change before job actually runs.
elif args.mode == 'create_exp':
cf = utils.prep_exp(args.exp_source, args.exp_dir, args.server_env, use_stored_settings=True)
logger = utils.get_logger(cf.exp_dir)
logger.info('created experiment directory at {}'.format(args.exp_dir))
else:
raise RuntimeError('mode specified in args is not implemented...')