diff --git a/docs/tutorials/visualization.rst b/docs/tutorials/visualization.rst index 57a16ad0ff..de971ef8bb 100644 --- a/docs/tutorials/visualization.rst +++ b/docs/tutorials/visualization.rst @@ -105,6 +105,20 @@ Plotters have two sets of options that customize their behavior and figure conte and ``figure_options``, which have figure-specific parameters that control aspects of the figure itself, such as axis labels and series colors. +To see the residual plot, set ``plot_residuals=True`` in the analysis options: + +.. jupyter-execute:: + + # Set to ``True`` analysis option for residual plot + rabi.analysis.set_options(plot_residuals=True) + + # Run experiment + rabi_data = rabi.run().block_for_results() + rabi_data.figure(0) + + +This option works for experiments without subplots in their figures. + Here is a more complicated experiment in which we customize the figure of a DRAG experiment before it's run, so that we don't need to regenerate the figure like in the previous example. First, we run the experiment without customizing the options diff --git a/qiskit_experiments/curve_analysis/base_curve_analysis.py b/qiskit_experiments/curve_analysis/base_curve_analysis.py index 5aefcbe9f0..36cab0ef4a 100644 --- a/qiskit_experiments/curve_analysis/base_curve_analysis.py +++ b/qiskit_experiments/curve_analysis/base_curve_analysis.py @@ -153,6 +153,8 @@ def _default_options(cls) -> Options: the analysis result. plot_raw_data (bool): Set ``True`` to draw processed data points, dataset without formatting, on canvas. This is ``False`` by default. + plot_residuals (bool): Set ``True`` to draw the residuals data for the + fitting model. This is ``False`` by default. plot (bool): Set ``True`` to create figure for fit result or ``False`` to not create a figure. This overrides the behavior of ``generate_figures``. return_fit_parameters (bool): (Deprecated) Set ``True`` to return all fit model parameters @@ -207,6 +209,7 @@ def _default_options(cls) -> Options: options.plotter = CurvePlotter(MplDrawer()) options.plot_raw_data = False + options.plot_residuals = False options.return_fit_parameters = True options.return_data_points = False options.data_processor = None diff --git a/qiskit_experiments/curve_analysis/curve_analysis.py b/qiskit_experiments/curve_analysis/curve_analysis.py index d1266e1615..7604432953 100644 --- a/qiskit_experiments/curve_analysis/curve_analysis.py +++ b/qiskit_experiments/curve_analysis/curve_analysis.py @@ -20,6 +20,7 @@ from typing import Dict, List, Tuple, Union, Optional from functools import partial +from copy import deepcopy import lmfit import numpy as np import pandas as pd @@ -31,6 +32,7 @@ ) from qiskit_experiments.framework.containers import FigureType, ArtifactData from qiskit_experiments.data_processing.exceptions import DataProcessorError +from qiskit_experiments.visualization import PlotStyle from .base_curve_analysis import BaseCurveAnalysis, DATA_ENTRY_PREFIX, PARAMS_ENTRY_PREFIX from .curve_data import FitOptions, CurveFitResult @@ -123,6 +125,7 @@ def __init__( self._models = models or [] self._name = name or self.__class__.__name__ + self._plot_config_cache = {} @property def name(self) -> str: @@ -148,6 +151,118 @@ def model_names(self) -> List[str]: """Return model names.""" return [getattr(m, "_name", f"model-{i}") for i, m in enumerate(self._models)] + def set_options(self, **fields): + """Set the analysis options for :meth:`run` method. + + Args: + fields: The fields to update the options + + Raises: + KeyError: When removed option ``curve_fitter`` is set. + """ + if fields.get("plot_residuals") and not self.options.get("plot_residuals"): + # checking there are no subplots for the figure to prevent collision in subplot indices. + if self.plotter.options.get("subplots") != (1, 1): + warnings.warn( + "Residuals plotting is currently supported for analysis with 1 subplot.", + UserWarning, + stacklevel=2, + ) + fields["plot_residuals"] = False + else: + self._add_residuals_plot_config() + if not fields.get("plot_residuals", True) and self.options.get("plot_residuals"): + self._remove_residuals_plot_config() + + super().set_options(**fields) + + def _add_residuals_plot_config(self): + """Configure plotter options for residuals plot.""" + # check we have model to fit into + residual_plot_y_axis_size = 3 + if self.models: + # Cache figure options. + self._plot_config_cache["figure_options"] = {} + self._plot_config_cache["figure_options"]["ylabel"] = self.plotter.figure_options.get( + "ylabel" + ) + self._plot_config_cache["figure_options"]["series_params"] = deepcopy( + self.plotter.figure_options.get("series_params") + ) + self._plot_config_cache["figure_options"]["sharey"] = self.plotter.figure_options.get( + "sharey" + ) + + self.plotter.set_figure_options( + ylabel=[ + self.plotter.figure_options.get("ylabel", ""), + "Residuals", + ], + ) + + model_names = self.model_names() + series_params = self.plotter.figure_options["series_params"] + for model_name in model_names: + if series_params.get(model_name): + series_params[model_name]["canvas"] = 0 + else: + series_params[model_name] = {"canvas": 0} + series_params[model_name + "_residuals"] = series_params[model_name].copy() + series_params[model_name + "_residuals"]["canvas"] = 1 + self.plotter.set_figure_options(sharey=False, series_params=series_params) + + # Cache plotter options. + self._plot_config_cache["plotter"] = {} + self._plot_config_cache["plotter"]["subplots"] = self.plotter.options.get("subplots") + self._plot_config_cache["plotter"]["style"] = deepcopy( + self.plotter.options.get("style", PlotStyle({})) + ) + + # removing the name from the plotter style, so it will not clash with the new name + previous_plotter_style = self._plot_config_cache["plotter"]["style"].copy() + previous_plotter_style.pop("style_name", "") + + # creating new fig size based on previous size + new_figsize = self.plotter.drawer.options.get("figsize", (8, 5)) + new_figsize = (new_figsize[0], new_figsize[1] + residual_plot_y_axis_size) + + # Here add the configuration for the residuals plot: + self.plotter.set_options( + subplots=(2, 1), + style=PlotStyle.merge( + PlotStyle( + { + "figsize": new_figsize, + "textbox_rel_pos": (0.28, -0.10), + "sub_plot_heights_list": [7 / 10, 3 / 10], + "sub_plot_widths_list": [1], + "style_name": "residuals", + } + ), + previous_plotter_style, + ), + ) + + def _remove_residuals_plot_config(self): + """set options for a single plot to its cached values.""" + if self.models: + self.plotter.set_figure_options( + ylabel=self._plot_config_cache["figure_options"]["ylabel"], + sharey=self._plot_config_cache["figure_options"]["sharey"], + series_params=self._plot_config_cache["figure_options"]["series_params"], + ) + + # Here add the style_name so the plotter will know not to print the residual data. + self.plotter.set_options( + subplots=self._plot_config_cache["plotter"]["subplots"], + style=PlotStyle.merge( + self._plot_config_cache["plotter"]["style"], + PlotStyle({"style_name": "canceled_residuals"}), + ), + ) + + self._plot_config_cache = {} + def _run_data_processing( self, raw_data: List[Dict], @@ -335,8 +450,13 @@ def _run_curve_fit( fit_options = [fit_options] # Create convenient function to compute residual of the models. - partial_residuals = [] + partial_weighted_residuals = [] valid_uncertainty = np.all(np.isfinite(curve_data.y_err)) + + # creating storage for residual plotting + if self.options.get("plot_residuals"): + residual_weights_list = [] + for idx, sub_data in curve_data.iter_by_series_id(): if valid_uncertainty: nonzero_yerr = np.where( @@ -350,16 +470,23 @@ def _run_curve_fit( # some yerr values might be very close to zero, yielding significant weights. # With such outlier, the fit doesn't sense residual of other data points. maximum_weight = np.percentile(raw_weights, 90) - weights = np.clip(raw_weights, 0.0, maximum_weight) + weights_list = np.clip(raw_weights, 0.0, maximum_weight) else: - weights = None - model_residual = partial( + weights_list = None + model_weighted_residual = partial( self._models[idx]._residual, data=sub_data.y, - weights=weights, + weights=weights_list, x=sub_data.x, ) - partial_residuals.append(model_residual) + partial_weighted_residuals.append(model_weighted_residual) + + # adding weights to weights_list for residuals + if self.options.get("plot_residuals"): + if weights_list is None: + residual_weights_list.append(None) + else: + residual_weights_list.append(weights_list) # Run fit for each configuration res = None @@ -379,7 +506,7 @@ def _run_curve_fit( try: with np.errstate(all="ignore"): new = lmfit.minimize( - fcn=lambda x: np.concatenate([p(x) for p in partial_residuals]), + fcn=lambda x: np.concatenate([p(x) for p in partial_weighted_residuals]), params=guess_params, method=self.options.fit_method, scale_covar=not valid_uncertainty, @@ -396,11 +523,30 @@ def _run_curve_fit( if new.success and res.redchi > new.redchi: res = new + # if `plot_residuals` is ``False`` I would like the `residuals_model` be None to emphasize it + # wasn't calculated. + residuals_model = [] if self.options.get("plot_residuals") else None + if res and res.success and self.options.get("plot_residuals"): + for weights in residual_weights_list: + if weights is None: + residuals_model.append(res.residual) + else: + residuals_model.append( + [ + weighted_res / np.abs(weight) + for weighted_res, weight in zip(res.residual, weights) + ] + ) + + if residuals_model is not None: + residuals_model = np.array(residuals_model) + return convert_lmfit_result( res, self._models, curve_data.x, curve_data.y, + residuals_model, ) def _create_figures( @@ -449,6 +595,14 @@ def _create_figures( y_interp_err=fit_stdev, ) + if self.options.get("plot_residuals"): + residuals_data = sub_data.filter(category="residuals") + self.plotter.set_series_data( + series_name=model_name, + x_residuals=residuals_data.x, + y_residuals=residuals_data.y, + ) + return [self.plotter.figure()] def _run_analysis( @@ -526,6 +680,22 @@ def _run_analysis( category="fitted", analysis=self.name, ) + + if self.options.get("plot_residuals"): + # need to add here the residuals plot. + xval_residual = sub_data.x + yval_residuals = unp.nominal_values(fit_data.residuals[series_id]) + + for xval, yval in zip(xval_residual, yval_residuals): + table.add_row( + xval=xval, + yval=yval, + series_name=model_names[series_id], + series_id=series_id, + category="residuals", + analysis=self.name, + ) + result_data.extend( self._create_analysis_results( fit_data=fit_data, diff --git a/qiskit_experiments/curve_analysis/curve_data.py b/qiskit_experiments/curve_analysis/curve_data.py index 8627b404ff..13263227bb 100644 --- a/qiskit_experiments/curve_analysis/curve_data.py +++ b/qiskit_experiments/curve_analysis/curve_data.py @@ -168,6 +168,8 @@ def __init__( var_names: Optional[List[str]] = None, x_data: Optional[np.ndarray] = None, y_data: Optional[np.ndarray] = None, + weighted_residuals: Optional[np.ndarray] = None, + residuals: Optional[np.ndarray] = None, covar: Optional[np.ndarray] = None, ): """Create new Qiskit curve analysis result object. @@ -188,6 +190,8 @@ def __init__( var_names: Name of variables, i.e. fixed parameters are excluded from the list. x_data: X values used for the fitting. y_data: Y values used for the fitting. + weighted_residuals: The residuals from the fitting after assigning weights for each ydata. + residuals: residuals of the fitted model. covar: Covariance matrix of fitting variables. """ self.method = method @@ -205,6 +209,8 @@ def __init__( self.var_names = var_names self.x_data = x_data self.y_data = y_data + self.weighted_residuals = weighted_residuals + self.residuals = residuals self.covar = covar @property diff --git a/qiskit_experiments/curve_analysis/utils.py b/qiskit_experiments/curve_analysis/utils.py index c2d4f47900..21405a37af 100644 --- a/qiskit_experiments/curve_analysis/utils.py +++ b/qiskit_experiments/curve_analysis/utils.py @@ -115,6 +115,7 @@ def convert_lmfit_result( models: List[lmfit.Model], xdata: np.ndarray, ydata: np.ndarray, + residuals: np.ndarray, ) -> CurveFitResult: """A helper function to convert LMFIT ``MinimizerResult`` into :class:`.CurveFitResult`. @@ -128,6 +129,7 @@ def convert_lmfit_result( models: Model used for the fitting. Function description is extracted. xdata: X values used for the fitting. ydata: Y values used for the fitting. + residuals: The residuals of the ydata from the model. Returns: QiskitExperiments :class:`.CurveFitResult` object. @@ -169,6 +171,8 @@ def convert_lmfit_result( var_names=result.var_names, x_data=xdata, y_data=ydata, + weighted_residuals=result.residual, + residuals=residuals, covar=covar, ) diff --git a/qiskit_experiments/framework/backend_data.py b/qiskit_experiments/framework/backend_data.py index c306e97edf..2dd1e94ed4 100644 --- a/qiskit_experiments/framework/backend_data.py +++ b/qiskit_experiments/framework/backend_data.py @@ -18,9 +18,24 @@ class unifies data access for various data fields. from qiskit.providers.models import PulseBackendConfiguration from qiskit.providers import BackendV1, BackendV2 from qiskit.providers.fake_provider import FakeBackend -from qiskit.providers.fake_provider.fake_backend import FakeBackendV2 from qiskit.utils.deprecation import deprecate_func +try: + # Removed in Qiskit 1.0. + from qiskit.providers.fake_provider.fake_backend import FakeBackendV2 +except ImportError: + + class FakeBackendV2: + """Dummy class for when FakeBackendV2 import fails + + This class is only used in isinstance checks. If the import fails, then + there won't be an instance of the class either so any dummy class is + fine. + """ + + pass + + try: # Removed in Qiskit 1.0. Different from the other FakeBackendV2's from qiskit.providers.fake_provider import QiskitFakeBackendV2 diff --git a/qiskit_experiments/visualization/drawers/mpl_drawer.py b/qiskit_experiments/visualization/drawers/mpl_drawer.py index 6ab12bfaaa..630e677d20 100644 --- a/qiskit_experiments/visualization/drawers/mpl_drawer.py +++ b/qiskit_experiments/visualization/drawers/mpl_drawer.py @@ -91,17 +91,55 @@ def initialize_canvas(self): # especially when the analysis consists of multiple curves. # Inset axis is experimental implementation of matplotlib 3.0 so maybe unstable API. # This draws inset axes with shared x and y axis. - inset_ax_h = 1 / n_rows - inset_ax_w = 1 / n_cols - for i in range(n_rows): - for j in range(n_cols): + if ( + self.figure_options.get("custom_style", {}).get("style_name") == "residuals" + and n_subplots != 2 + ): + # raising an error for residual plotting that isn't on individual plot per figure. + raise QiskitError( + "Residual plots and residual plotting style is supported for " + "figures with one sub-plot only." + ) + + inset_ax_h_list = self.figure_options.custom_style.get( + "sub_plot_heights_list", [1 / n_rows] * n_rows + ) + inset_ax_w_list = self.figure_options.custom_style.get( + "sub_plot_widths_list", [1 / n_cols] * n_cols + ) + + # Check that the heights and widths are lists. + if (not isinstance(inset_ax_h_list, List)) or (not isinstance(inset_ax_w_list, List)): + raise QiskitError( + "Sub-plots heights and widths list need to be a list of floats that sum" + " up to 1" + ) + + # adding a check for correct sizes of subplots. + if not np.isclose(sum(inset_ax_h_list), 1) or not np.isclose(sum(inset_ax_w_list), 1): + raise QiskitError( + "The subplots aren't covering all the figure. " + "Check subplots heights and widths configurations." + ) + + # setting the row tracker. + sum_heights = 0 + for i, inset_ax_h in enumerate(inset_ax_h_list): + # updating row tracker. + sum_heights += inset_ax_h + + # setting column tracker. + sum_widths = 0 + + for j, inset_ax_w in enumerate(inset_ax_w_list): # x0, y0, width, height bounds = [ - inset_ax_w * j, - 1 - inset_ax_h * (i + 1), + sum_widths, + 1 - sum_heights, inset_ax_w, inset_ax_h, ] + sub_ax = axis.inset_axes(bounds, transform=axis.transAxes, zorder=1) if j != 0 and sharey: # remove y axis except for most-left plot @@ -130,6 +168,9 @@ def initialize_canvas(self): sub_ax.tick_params(labelsize=self.style["tick_label_size"]) sub_ax.grid() + # updating where we are on the grid. + sum_widths += inset_ax_w + # Remove original axis frames axis.axis("off") else: @@ -316,6 +357,10 @@ def _get_default_color(self, name: SeriesName) -> Tuple[float, ...]: Returns: Default color available in matplotlib. """ + if self.figure_options.get("custom_style", {}).get("style_name") == "residuals": + if name[: -len("_residuals")] in self._series: + name = name[: -len("_residuals")] + if name not in self._series: self._series.append(name) diff --git a/qiskit_experiments/visualization/plotters/curve_plotter.py b/qiskit_experiments/visualization/plotters/curve_plotter.py index 033ba81a54..4cdd966a3b 100644 --- a/qiskit_experiments/visualization/plotters/curve_plotter.py +++ b/qiskit_experiments/visualization/plotters/curve_plotter.py @@ -46,6 +46,8 @@ def expected_series_data_keys(cls) -> List[str]: y_interp: Y-values corresponding to the fit for ``y_interp`` X-values. y_interp_err: The standard deviations of the fit for each X-value in ``y_interp``. This data key relates to the option ``plot_sigma``. + x_residuals: The X-values for the residual plot. + y_residuals: The residual from the fitting. """ return [ "x", @@ -56,6 +58,8 @@ def expected_series_data_keys(cls) -> List[str]: "x_interp", "y_interp", "y_interp_err", + "x_residuals", + "y_residuals", ] @classmethod @@ -163,6 +167,14 @@ def _plot_figure(self): zorder=5, ) + # Plot residuals + if self.data_exists_for(ser, ["x_residuals", "y_residuals"]): + # check if we cancel residuals plotting + if self.options.get("style", {}).get("style_name") != "canceled_residuals": + series_name = ser + "_residuals" + x, y = self.data_for(ser, ["x_residuals", "y_residuals"]) + self.drawer.scatter(x, y, name=series_name, legend=True) + # Fit report report = self._write_report() if len(report) > 0: diff --git a/releasenotes/notes/residuals_plot-377aabb9193a5a98.yaml b/releasenotes/notes/residuals_plot-377aabb9193a5a98.yaml new file mode 100644 index 0000000000..1759575fae --- /dev/null +++ b/releasenotes/notes/residuals_plot-377aabb9193a5a98.yaml @@ -0,0 +1,7 @@ +--- +features: + - | + Added residual plot option for single-figure experiments. Enable by setting plot_residuals to True. + Introducing sub_plot_heights_list and sub_plot_widths_list attributes in PlotStyle for customizable + subplot sizes, each list needs to sum up to 1. This feature currently works only for experiments with + no subplots. diff --git a/test/library/calibration/test_ramsey_xy.py b/test/library/calibration/test_ramsey_xy.py index 43ba1dbf67..693e8b48ca 100644 --- a/test/library/calibration/test_ramsey_xy.py +++ b/test/library/calibration/test_ramsey_xy.py @@ -141,6 +141,25 @@ def test_cal_experiment_config(self): self.assertNotEqual(exp, loaded_exp) self.assertEqualExtended(exp, loaded_exp) + def test_residual_plot(self): + """Test if plot is changing due to residual plotting.""" + freq_shift = 1e3 + + exp_helper = RamseyXYHelper() + ramsey = RamseyXY([0]) + ramsey.backend = MockIQBackend(exp_helper) + + exp_helper.freq_shift = freq_shift + ramsey.analysis.set_options(plot_residuals=True) + test_data = ramsey.run().block_for_results() + test_data_figure_bounds = test_data.figure(0).figure.figbbox.bounds + + ramsey.analysis.set_options(plot_residuals=False) + test_data2 = ramsey.run().block_for_results() + test_data2_figure_bounds = test_data2.figure(0).figure.figbbox.bounds + + self.assertNotEqual(test_data_figure_bounds[3], test_data2_figure_bounds[3]) + @unittest.skip("Cal experiments are not yet JSON serializable") def test_freqcal_roundtrip_serializable(self): """Test round trip JSON serialization"""