-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwinding_number_in_geometric_algebra.html
231 lines (210 loc) · 8.59 KB
/
winding_number_in_geometric_algebra.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
<!DOCTYPE html>
<html lang="en">
<head>
<!-- 2022-07-23 Sat 05:11 -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Winding number in geometric algebra</title>
<meta name="generator" content="Org mode">
<meta name="author" content="ivanaf">
<link rel="stylesheet" type="text/css" href="css/org.css"/>
<link rel="icon" href="ico/favicon.ico" type="image/x- icon">
<script type="text/javascript">
/*
@licstart The following is the entire license notice for the
JavaScript code in this tag.
Copyright (C) 2012-2020 Free Software Foundation, Inc.
The JavaScript code in this tag is free software: you can
redistribute it and/or modify it under the terms of the GNU
General Public License (GNU GPL) as published by the Free Software
Foundation, either version 3 of the License, or (at your option)
any later version. The code is distributed WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU GPL for more details.
As additional permission under GNU GPL version 3 section 7, you
may distribute non-source (e.g., minimized or compacted) forms of
that code without the copy of the GNU GPL normally required by
section 4, provided you include this license notice and a URL
through which recipients can access the Corresponding Source.
@licend The above is the entire license notice
for the JavaScript code in this tag.
*/
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
displayAlign: "center",
displayIndent: "0em",
"HTML-CSS": { scale: 100,
linebreaks: { automatic: "false" },
webFont: "TeX"
},
SVG: {scale: 100,
linebreaks: { automatic: "false" },
font: "TeX"},
NativeMML: {scale: 100},
TeX: { equationNumbers: {autoNumber: "AMS"},
MultLineWidth: "85%",
TagSide: "right",
TagIndent: ".8em"
}
});
</script>
<script type="text/javascript"
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script>
</head>
<body>
<div id="content">
<div class="head">
<div class="title">
<p>
<a href="index.html">Ivanaf</a>
</p>
</div>
<menu>
<ul class="org-ul">
<li><a href="index.html">Home</a></li>
<li><a href="journal.html">Journal</a></li>
<li><a href="about.html">About</a></li>
<li><a href="resume.html">Resume</a></li>
<li><a href="portfolio.html">Portfolio</a></li>
<li><a href="contact.html">Contact</a></li>
<li><a href="projects_ideas.html">Messy Ideas</a></li>
</ul>
</menu>
</div>
<p>
</p><h1>
Winding number in geometric algebra
</h1><p>
</p>
<p>
<span class=page-date> <small>
2021-01-08, updated 2021-01-08 — <a href='journal.html#math' class='math tagbutton'>math</a> <a href='journal.html#blog' class='blog tagbutton'>blog</a>   <a href="resetting_oneshot_original_2014_rpgmaker_on_wine_linux.html">⇦Resetting oneshot original (2014, RPGmaker) on wine, linux</a> – <a href="making_zoontycoon2_ultimate_edition_run_on_wine_on_ubuntu.html">Making zoontycoon2 ultimate edition run on wine on ubuntu.⇨</a>
</small> </span>
</p>
<nav id="table-of-contents">
<input id="toggle-toc" style="display: none; visibility: hidden;" type="checkbox">
<label for="toggle-toc">
<h2> <b> Table of Contents </b> </h2>
</label>
<div id="text-table-of-contents">
<ul>
<li><a href="#2_dimensions">1. 2 dimensions</a></li>
<li><a href="#more_dimensions">2. More dimensions</a></li>
<li><a href="#using_this_with_functions">3. Using this with functions</a></li>
</ul>
</div>
</nav>
<p>
From the wikipedia, <a href="https://en.wikipedia.org/wiki/Winding_number#Complex_analysis">https://en.wikipedia.org/wiki/Winding_number#Complex_analysis</a>, we can see the definition of winding number in complex analysis.
</p>
<div id="outline-container-2_dimensions" class="outline-2">
<h2 id="2_dimensions"><span class="section-number-2">1</span> 2 dimensions</h2>
<div class="outline-text-2" id="text-1">
<p>
And so we can adapt it to geometric algebra in 2 dimensions.
</p>
<p>
Let \(\partial M\) be a curve (we are calling it \(\delta M\) because we will later perform the analysis using the fundamental theorem of calculus for geometric algebra), and let \(j\), be the pseudo scalar in 2 dimensions.
</p>
<p>
The winding number is:
\[\frac{1}{2\pi j} \oint_{\partial M} d\mathbf{x} \frac{\mathbf{x}}{|x|^{-2}} = \frac{1}{2\pi j}\oint_{\partial M} d\mathbf{x} \mathbf{x}^{-1} \]
</p>
<p>
The scalar component will cancel itself, and just the bivector component is left, therefore we divide by the pseudoscalar. And 2π is the length of the boundary of a circle.
</p>
<p>
Using the fundamental theorem of calculus for geometric calculus (Alan Macdonald - Vector and Geometric Calculus, section 10.1), supposing that \(M\) is a surface.
</p>
<p>
\[\frac{1}{2\pi j}\oint_{\partial M} d\mathbf{x} \mathbf{x}^{-1} = \frac{1}{2\pi j} \int_{ M} d\mathbf{x^2} \partial\left(\mathbf{x}^{-1}\right)\]
</p>
<p>
\(\partial\left(\mathbf{x}^{-1}\right)\) is equal to 0 at every place except the origin, but we can "include the origin" by using a kronecker delta
</p>
<p>
\[\frac{1}{2\pi j}\oint_{\partial M} d\mathbf{x} \mathbf{x}^{-1} = \int_{ M} d\mathbf{x^2} \delta_\mathbf{x}(\mathbf{x}) = \begin{cases}
1,& \text{if the volume includes the origin}\\
0, & \text{otherwise}
\end{cases}
\]
</p>
</div>
</div>
<div id="outline-container-more_dimensions" class="outline-2">
<h2 id="more_dimensions"><span class="section-number-2">2</span> More dimensions</h2>
<div class="outline-text-2" id="text-2">
<p>
We can extend this to more dimensions. Let \(n\) be the dimensions, and let \(A_n\) be the \(n-1\) dimensional area of the \(n\) dimensional unit sphere. Then:
\[\frac{1}{A_n}\oint_{\partial M} d\mathbf{x^{n-1}} \frac{\mathbf{x}}{|x|^n} = \int_{ M} d\mathbf{x^n} \delta_\mathbf{x}(\mathbf{x}) = \begin{cases}
1,& \text{if the volume includes the origin}\\
0, & \text{otherwise}
\end{cases}
\]
</p>
<p>
for 3 dimensions you should recognize this equation from the electrical field of a point charge in the origin.
</p>
</div>
</div>
<div id="outline-container-using_this_with_functions" class="outline-2">
<h2 id="using_this_with_functions"><span class="section-number-2">3</span> Using this with functions</h2>
<div class="outline-text-2" id="text-3">
<p>
Let say you wanna find the \(0\)s of a function, and you are using the winding number algorithm <a href="https://www.youtube.com/watch?v=b7FxPsqfkOY">https://www.youtube.com/watch?v=b7FxPsqfkOY</a>.
</p>
<p>
TODO
</p>
</div></div>
<br>
<div class="comments">
<div id="disqus_thread"></div>
<script type="text/javascript">
/* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */
var disqus_shortname = 'ivanaf'; // Required - Replace '<example>' with your forum shortname
/* * * DON'T EDIT BELOW THIS LINE * * */
var showComments = function() {
var button = document.getElementById('comment-button')
button.style.display = 'none'
var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true;
dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js';
(document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq);
};
</script>
<noscript>Please enable JavaScript to view the <a href="https://disqus.com/?ref_noscript">comments powered by Disqus.</a></noscript>
<button id="comment-button" onclick="showComments()">Show comments</button>
</div>
<div><div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Ivan Tadeu Ferreira Antunes Filho</p>
<p class="date">Date: 2022-07-23 Sat 05:11</p>
<p class="author">Github: <a href="https://github.com/itf/">github.com/itf</a></p>
<p class="creator">Made with <a href="https://www.gnu.org/software/emacs/">Emacs</a> 27.1 (<a href="https://orgmode.org">Org</a> mode 9.3) and <a href="https://github.com/itf/org-export-head">Org export head</a> </p>
</div>
</body>
</html>