-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathBinarySearchTree.cpp
226 lines (207 loc) · 4.6 KB
/
BinarySearchTree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
//
#include "BinarySearchTree.h"
#include <iostream>
//Method section for Node class
int Node::getHeight(){
if(this)
return this->height;
return 0;
}
//Method section for BinarySearchTree class
BinarySearchTree::BinarySearchTree() : root(NULL), numberOfNodes(0)
{}
bool BinarySearchTree::isEmpty() const
{
return this->root == NULL;
}
int BinarySearchTree::getNumberOfNodes() const
{
return this->numberOfNodes;
}
ItemType BinarySearchTree::getRootData() const
{
return root->item;
}
void BinarySearchTree::setRootData(const ItemType& newData)
{
this->root->item = newData;
}
Node* BinarySearchTree::createNewNodeWithItem(int item)
{
Node* newNode = new Node;
try {
newNode = new Node;
}catch(std::bad_alloc e){
std::cout << "Bad alloc!";
}
newNode->left = NULL;
newNode->right = NULL;
newNode->item = item;
return newNode;
}
bool BinarySearchTree::add(const ItemType& newData)
{
//add
Node *newNodePtr = createNewNodeWithItem(newData);
insertInOrder(root, newNodePtr);
numberOfNodes ++;
return 1;
}
bool BinarySearchTree::remove(const ItemType& data)
{
bool success = false;
success = findNodeToRemove(root, data);
return success;
}
bool BinarySearchTree::findNodeToRemove(Node* &subtrePtr, int data)
{
//if located
if (subtrePtr == NULL)
{
return false;
}
if (subtrePtr->item == data)
{
//
std::cout << "node to delte: " << subtrePtr->item << " " << subtrePtr << std::endl;;
removeNode(subtrePtr);
}
else if (data < subtrePtr->item)
{
findNodeToRemove(subtrePtr->left, data);
}
else
{
findNodeToRemove(subtrePtr->right, data);
}
}
void BinarySearchTree::removeNode(Node* &nodeToRemove)
{
Node* delPtr;
/*three cases */
/*is leaf when two pointers are null*/
const bool isLeaf = !nodeToRemove->left && !nodeToRemove->right;
/*node has one children when one of the two pointers is not null and the other is */
const bool hasOneChild = (nodeToRemove->left && !nodeToRemove->right) ||
(!nodeToRemove->left && nodeToRemove->right);
/*node has two children when two of its pointers are not null*/
const bool hasTwoChildren = nodeToRemove->left && nodeToRemove->right;
if (isLeaf)
{ //1. node is leaf
delete nodeToRemove;
nodeToRemove = NULL;
}
else if(hasOneChild)
{
//2. node has only one children
delPtr = nodeToRemove;
if (nodeToRemove->left)
{
nodeToRemove = nodeToRemove->left;
delPtr->left = NULL;
}
else
{
nodeToRemove = nodeToRemove->right;
delPtr->right = NULL;
}
delete delPtr;
delPtr = NULL;
}
else if(hasTwoChildren){
//3. node have two children
//locate in order successor
Node* inOrderSuccessor = locateInOrderSuccessor(nodeToRemove->right);
nodeToRemove->item = inOrderSuccessor->item;
removeNode(inOrderSuccessor);
}
}
Node* BinarySearchTree::locateInOrderSuccessor(Node* node)
{
if (node->left == NULL)
{
return node;
}
else
{
return locateInOrderSuccessor(node->left);
}
}
void BinarySearchTree::insertInOrder(Node* &subtrePtr, Node *newNodePtr)
{
if(subtrePtr == NULL)
{
//the insertion point is found
subtrePtr = newNodePtr;
}else if(subtrePtr->item < newNodePtr->item)
{
//search right sub-tree of subtrePtr
insertInOrder(subtrePtr->right, newNodePtr);
}else
{
insertInOrder(subtrePtr->left, newNodePtr);
}
}
ItemType BinarySearchTree::getEntry(const ItemType& anEntry) const
{
return searchForEntry(anEntry, this->root);
}
ItemType BinarySearchTree::searchForEntry(const ItemType& anEntry, Node* treePtr)const
{
if (treePtr == NULL)
{
return -1;
}
if (anEntry == treePtr->item)
{
//item found
return treePtr->item;
}
else if (anEntry > treePtr->item)
{
searchForEntry(anEntry, treePtr->right);
}
else {
searchForEntry(anEntry, treePtr->left);
}
}
//traverse section
void BinarySearchTree::preorderTraverse(void visit(ItemType&))const
{
preTraverse(visit, this->root);
}
void BinarySearchTree::inorderTraverse(void visit(ItemType&)) const
{
inTraverse(visit, this->root);
}
void BinarySearchTree::postorderTraverse(void visit(ItemType&))const
{
postTraverse(visit, this->root);
}
void BinarySearchTree::preTraverse(void visit(ItemType&), Node* treePtr) const
{
if(treePtr != NULL)
{
visit(treePtr->item);
preTraverse(visit, treePtr->left);
preTraverse(visit, treePtr->right);
}
}
void BinarySearchTree::inTraverse(void visit(ItemType&), Node* treePtr) const
{
if(treePtr != NULL)
{
inTraverse(visit, treePtr->left);
visit(treePtr->item);
inTraverse(visit, treePtr->right);
}
}
void BinarySearchTree::postTraverse(void visit(ItemType&), Node* treePtr) const
{
if(treePtr != NULL)
{
postTraverse(visit, treePtr->left);
postTraverse(visit, treePtr->right);
visit(treePtr->item);
}
}