-
Notifications
You must be signed in to change notification settings - Fork 68
/
demo_video.py
46 lines (33 loc) · 1.45 KB
/
demo_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import sys
import urllib.request
import tensorflow as tf
import tensorflow_hub as tfhub
import tensorflow_io as tfio
import cameralib
import poseviz
def main():
model = tfhub.load('https://bit.ly/metrabs_l')
skeleton = 'smpl_24'
joint_names = model.per_skeleton_joint_names[skeleton].numpy().astype(str)
joint_edges = model.per_skeleton_joint_edges[skeleton].numpy()
video_filepath = get_video(sys.argv[1]) # You can also specify the filepath directly here.
frame_batches = tfio.IODataset.from_ffmpeg(video_filepath, 'v:0').batch(8).prefetch(1)
camera = cameralib.Camera.from_fov(
fov_degrees=55, imshape=frame_batches.element_spec.shape[1:3])
with poseviz.PoseViz(joint_names, joint_edges) as viz:
for frame_batch in frame_batches:
pred = model.detect_poses_batched(
frame_batch, intrinsic_matrix=camera.intrinsic_matrix[tf.newaxis],
skeleton=skeleton)
for frame, boxes, poses in zip(frame_batch, pred['boxes'], pred['poses3d']):
viz.update(frame=frame, boxes=boxes, poses=poses, camera=camera)
def get_video(source, temppath='/tmp/video.mp4'):
if not source.startswith('http'):
return source
opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
urllib.request.install_opener(opener)
urllib.request.urlretrieve(source, temppath)
return temppath
if __name__ == '__main__':
main()