forked from optuna/optuna-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmxnet_integration.py
136 lines (104 loc) · 4.59 KB
/
mxnet_integration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
Optuna example that demonstrates a pruner for MXNet.
In this example, we optimize the validation accuracy of hand-written digit recognition using
MXNet and MNIST, where the architecture of the neural network and the learning rate of optimizer
is optimized. Throughout the training of neural networks, a pruner observes intermediate
results and stops unpromising trials.
You can run this example as follows:
$ python mxnet_integration.py
"""
import logging
import urllib
import numpy as np
import optuna
from optuna.integration import MXNetPruningCallback
from optuna.trial import TrialState
import mxnet as mx
# TODO(crcrpar): Remove the below three lines once everything is ok.
# Register a global custom opener to avoid HTTP Error 403: Forbidden when downloading MNIST.
opener = urllib.request.build_opener()
opener.addheaders = [("User-agent", "Mozilla/5.0")]
urllib.request.install_opener(opener)
N_TRAIN_EXAMPLES = 3000
N_TEST_EXAMPLES = 1000
BATCHSIZE = 128
EPOCH = 10
# Set log level for MXNet.
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def create_model(trial):
# We optimize the number of layers and hidden units in each layer.
n_layers = trial.suggest_int("n_layers", 1, 3)
data = mx.symbol.Variable("data")
data = mx.sym.flatten(data=data)
for i in range(n_layers):
num_hidden = trial.suggest_int("n_units_1{}".format(i), 4, 128, log=True)
data = mx.symbol.FullyConnected(data=data, num_hidden=num_hidden)
data = mx.symbol.Activation(data=data, act_type="relu")
data = mx.symbol.FullyConnected(data=data, num_hidden=10)
mlp = mx.symbol.SoftmaxOutput(data=data, name="softmax")
return mlp
def create_optimizer(trial):
# We optimize over the type of optimizer to use (Adam or SGD with momentum).
# We also optimize over the learning rate and weight decay of the selected optimizer.
weight_decay = trial.suggest_float("weight_decay", 1e-10, 1e-3, log=True)
optimizer_name = trial.suggest_categorical("optimizer", ["Adam", "MomentumSGD"])
if optimizer_name == "Adam":
adam_lr = trial.suggest_float("adam_lr", 1e-5, 1e-1, log=True)
optimizer = mx.optimizer.Adam(learning_rate=adam_lr, wd=weight_decay)
else:
momentum_sgd_lr = trial.suggest_float("momentum_sgd_lr", 1e-5, 1e-1, log=True)
optimizer = mx.optimizer.SGD(momentum=momentum_sgd_lr, wd=weight_decay)
return optimizer
def objective(trial):
# Generate trial model and trial optimizer.
mlp = create_model(trial)
optimizer = create_optimizer(trial)
# Load the test and train MNIST dataset.
# Use test data as a validation set.
mnist = mx.test_utils.get_mnist()
rng = np.random.RandomState(0)
permute_train = rng.permutation(len(mnist["train_data"]))
train = mx.io.NDArrayIter(
data=mnist["train_data"][permute_train][:N_TRAIN_EXAMPLES],
label=mnist["train_label"][permute_train][:N_TRAIN_EXAMPLES],
batch_size=BATCHSIZE,
shuffle=True,
)
permute_valid = rng.permutation(len(mnist["test_data"]))
val = mx.io.NDArrayIter(
data=mnist["test_data"][permute_valid][:N_TEST_EXAMPLES],
label=mnist["test_label"][permute_valid][:N_TEST_EXAMPLES],
batch_size=BATCHSIZE,
)
# Create our MXNet trainable model and fit it on MNIST data.
model = mx.mod.Module(symbol=mlp)
model.fit(
train_data=train,
eval_data=val,
eval_end_callback=MXNetPruningCallback(trial, eval_metric="accuracy"),
optimizer=optimizer,
optimizer_params={"rescale_grad": 1.0 / BATCHSIZE},
num_epoch=EPOCH,
)
# Compute the accuracy on the entire validation set.
valid = mx.io.NDArrayIter(
data=mnist["test_data"], label=mnist["test_label"], batch_size=BATCHSIZE
)
accuracy = model.score(eval_data=valid, eval_metric="acc")[0]
return accuracy[1]
if __name__ == "__main__":
study = optuna.create_study(direction="maximize", pruner=optuna.pruners.MedianPruner())
study.optimize(objective, n_trials=100, timeout=600)
pruned_trials = study.get_trials(deepcopy=False, states=[TrialState.PRUNED])
complete_trials = study.get_trials(deepcopy=False, states=[TrialState.COMPLETE])
print("Study statistics: ")
print(" Number of finished trials: ", len(study.trials))
print(" Number of pruned trials: ", len(pruned_trials))
print(" Number of complete trials: ", len(complete_trials))
print("Best trial:")
trial = study.best_trial
print(" Value: ", trial.value)
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))