Skip to content

Latest commit

 

History

History
81 lines (65 loc) · 2.55 KB

README.md

File metadata and controls

81 lines (65 loc) · 2.55 KB

PNP Loss in PyTorch


What's New

What can I find here?

This repository contains all code and implementations used in:

Rethinking the Optimization of Average Precision: Only Penalizing Negative Instances before Positive Ones is Enough

accepted to AAAI 2022

Requirements:

  • PyTorch 1.2.0+ & Faiss-Gpu
  • Python 3.6+
  • pretrainedmodels, torchvision 0.3.0+

An exemplary setup of a virtual environment containing everything needed:

(1) wget  https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
(2) bash Miniconda3-latest-Linux-x86_64.sh (say yes to append path to bashrc)
(3) source .bashrc
(4) conda create -n DL python=3.6
(5) conda activate DL
(6) conda install matplotlib scipy scikit-learn scikit-image tqdm pandas pillow
(7) conda install pytorch torchvision faiss-gpu cudatoolkit=10.0 -c pytorch
(8) pip install wandb pretrainedmodels
(9) Run the scripts!

Datasets:

Data for

online_products
└───images
|    └───bicycle_final
|           │   111085122871_0.jpg
|    ...
|
└───Info_Files
|    │   bicycle.txt
|    │   ...

Assuming your folder is placed in e.g. <$datapath/sop>, pass $datapath as input to --source.

Training:

Training is done by using main.py and setting the respective flags, all of which are listed and explained in parameters.py.

A basic sample run using the best parameters would like this:

python main.py --loss PNP  --seed 0 --bs 384 --data_sampler class_random --samples_per_class 4 --arch resnet50_frozen_normalize --source ../retrieval_dataset --n_epochs 400 --lr 1e-5 --embed_dim 512 --evaluate_on_gpu --dataset online_products --variant PNP-D_q --alpha 4

Paper

If you find this work useful, please consider citing:

@article{Li_Min_Song_Zhu_Kang_Wei_Wei_Jiang_2022, 
title={Rethinking the Optimization of Average Precision: Only Penalizing Negative Instances before Positive Ones Is Enough}, 
volume={36}, 
url={https://ojs.aaai.org/index.php/AAAI/article/view/20042}, 
DOI={10.1609/aaai.v36i2.20042}, 
number={2}, 
journal={Proceedings of the AAAI Conference on Artificial Intelligence}, 
author={Li, Zhuo and Min, Weiqing and Song, Jiajun and Zhu, Yaohui and Kang, Liping and Wei, Xiaoming and Wei, Xiaolin and Jiang, Shuqiang}, 
year={2022}, 
month={Jun.}, 
pages={1518-1526} 
}