This document outlines the deployment process for OPEA Productivity Suite utilizing the GenAIComps microservice pipeline on Intel Xeon server and GenAIExamples solutions. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as embedding
, retriever
, rerank
, and llm
. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service.
First of all, you need to build Docker Images locally and install the python package of it.
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build --no-cache -t opea/embedding:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/src/Dockerfile .
docker build --no-cache -t opea/retriever-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/redis/langchain/Dockerfile .
docker build --no-cache -t opea/reranking-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/reranks/src/Dockerfile .
docker build --no-cache -t opea/llm-textgen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/src/text-generation/Dockerfile .
docker build --no-cache -t opea/dataprep-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/redis/langchain/Dockerfile .
docker build -t opea/promptregistry-mongo-server:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/prompt_registry/mongo/Dockerfile .
docker build -t opea/chathistory-mongo-server:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/chathistory/mongo/Dockerfile .
cd ..
The Productivity Suite is composed of multiple GenAIExample reference solutions composed together.
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/ChatQnA/
docker build --no-cache -t opea/chatqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
cd GenAIExamples/DocSum
docker build --no-cache -t opea/docsum:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
cd GenAIExamples/CodeGen
docker build --no-cache -t opea/codegen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
cd GenAIExamples/FaqGen
docker build --no-cache -t opea/faqgen:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
Build frontend Docker image that enables via below command:
Export the value of the public IP address of your Xeon server to the host_ip
environment variable
cd GenAIExamples/ProductivitySuite/ui
docker build --no-cache -t opea/productivity-suite-react-ui-server:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile.react .
Since the compose.yaml
will consume some environment variables, you need to setup them in advance as below.
Export the value of the public IP address of your Xeon server to the host_ip
environment variable
Change the External_Public_IP below with the actual IPV4 value
export host_ip="External_Public_IP"
Export the value of your Huggingface API token to the your_hf_api_token
environment variable
Change the Your_Huggingface_API_Token below with tyour actual Huggingface API Token value
export your_hf_api_token="Your_Huggingface_API_Token"
Append the value of the public IP address to the no_proxy list
export your_no_proxy=${your_no_proxy},"External_Public_IP"
export MONGO_HOST=${host_ip}
export MONGO_PORT=27017
export DB_NAME="test"
export COLLECTION_NAME="Conversations"
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export LLM_MODEL_ID_CODEGEN="meta-llama/CodeLlama-7b-hf"
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6006"
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
export TGI_LLM_ENDPOINT="http://${host_ip}:9009"
export REDIS_URL="redis://${host_ip}:6379"
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export MEGA_SERVICE_HOST_IP=${host_ip}
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
export RERANK_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP_DOCSUM=${host_ip}
export LLM_SERVICE_HOST_IP_FAQGEN=${host_ip}
export LLM_SERVICE_HOST_IP_CODEGEN=${host_ip}
export LLM_SERVICE_HOST_IP_CHATQNA=${host_ip}
export TGI_LLM_ENDPOINT_CHATQNA="http://${host_ip}:9009"
export TGI_LLM_ENDPOINT_CODEGEN="http://${host_ip}:8028"
export TGI_LLM_ENDPOINT_FAQGEN="http://${host_ip}:9009"
export TGI_LLM_ENDPOINT_DOCSUM="http://${host_ip}:9009"
export BACKEND_SERVICE_ENDPOINT_CHATQNA="http://${host_ip}:8888/v1/chatqna"
export DATAPREP_DELETE_FILE_ENDPOINT="http://${host_ip}:6009/v1/dataprep/delete_file"
export BACKEND_SERVICE_ENDPOINT_FAQGEN="http://${host_ip}:8889/v1/faqgen"
export BACKEND_SERVICE_ENDPOINT_CODEGEN="http://${host_ip}:7778/v1/codegen"
export BACKEND_SERVICE_ENDPOINT_DOCSUM="http://${host_ip}:8890/v1/docsum"
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep"
export DATAPREP_GET_FILE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/get_file"
export CHAT_HISTORY_CREATE_ENDPOINT="http://${host_ip}:6012/v1/chathistory/create"
export CHAT_HISTORY_CREATE_ENDPOINT="http://${host_ip}:6012/v1/chathistory/create"
export CHAT_HISTORY_DELETE_ENDPOINT="http://${host_ip}:6012/v1/chathistory/delete"
export CHAT_HISTORY_GET_ENDPOINT="http://${host_ip}:6012/v1/chathistory/get"
export PROMPT_SERVICE_GET_ENDPOINT="http://${host_ip}:6018/v1/prompt/get"
export PROMPT_SERVICE_CREATE_ENDPOINT="http://${host_ip}:6018/v1/prompt/create"
export KEYCLOAK_SERVICE_ENDPOINT="http://${host_ip}:8080"
export LLM_SERVICE_HOST_PORT_FAQGEN=9002
export LLM_SERVICE_HOST_PORT_CODEGEN=9001
export LLM_SERVICE_HOST_PORT_DOCSUM=9003
export PROMPT_COLLECTION_NAME="prompt"
export RERANK_SERVER_PORT=8808
export EMBEDDING_SERVER_PORT=6006
export LLM_SERVER_PORT=9009
Note: Please replace with host_ip
with you external IP address, do not use localhost.
Before running the docker compose command, you need to be in the folder that has the docker compose yaml file
cd GenAIExamples/ProductivitySuite/docker_compose/intel/cpu/xeon
docker compose -f compose.yaml up -d
Please refer to keycloak_setup_guide for more detail related to Keycloak configuration setup.
-
TEI Embedding Service
curl ${host_ip}:6006/embed \ -X POST \ -d '{"inputs":"What is Deep Learning?"}' \ -H 'Content-Type: application/json'
-
Embedding Microservice
curl http://${host_ip}:6000/v1/embeddings\ -X POST \ -d '{"text":"hello"}' \ -H 'Content-Type: application/json'
-
Retriever Microservice
To consume the retriever microservice, you need to generate a mock embedding vector by Python script. The length of embedding vector is determined by the embedding model. Here we use the model
EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
, which vector size is 768.Check the vector dimension of your embedding model, set
your_embedding
dimension equals to it.export your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)") curl http://${host_ip}:7000/v1/retrieval \ -X POST \ -d "{\"text\":\"test\",\"embedding\":${your_embedding}}" \ -H 'Content-Type: application/json'
-
TEI Reranking Service
curl http://${host_ip}:8808/rerank \ -X POST \ -d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \ -H 'Content-Type: application/json'
-
Reranking Microservice
curl http://${host_ip}:8000/v1/reranking\ -X POST \ -d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \ -H 'Content-Type: application/json'
-
LLM backend Service (ChatQnA, DocSum, FAQGen)
curl http://${host_ip}:9009/generate \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \ -H 'Content-Type: application/json'
-
LLM backend Service (CodeGen)
curl http://${host_ip}:8028/generate \ -X POST \ -d '{"inputs":"def print_hello_world():","parameters":{"max_new_tokens":256, "do_sample": true}}' \ -H 'Content-Type: application/json'
-
ChatQnA LLM Microservice
curl http://${host_ip}:9000/v1/chat/completions\ -X POST \ -d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"stream":true}' \ -H 'Content-Type: application/json'
-
CodeGen LLM Microservice
curl http://${host_ip}:9001/v1/chat/completions\ -X POST \ -d '{"query":"def print_hello_world():"}' \ -H 'Content-Type: application/json'
-
DocSum LLM Microservice
curl http://${host_ip}:9003/v1/chat/docsum\ -X POST \ -d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5"}' \ -H 'Content-Type: application/json'
-
FAQGen LLM Microservice
curl http://${host_ip}:9002/v1/faqgen\ -X POST \ -d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5"}' \ -H 'Content-Type: application/json'
-
ChatQnA MegaService
curl http://${host_ip}:8888/v1/chatqna -H "Content-Type: application/json" -d '{ "messages": "What is the revenue of Nike in 2023?" }'
-
FAQGen MegaService
curl http://${host_ip}:8889/v1/faqgen -H "Content-Type: application/json" -d '{ "messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5." }'
-
DocSum MegaService
curl http://${host_ip}:8890/v1/docsum -H "Content-Type: application/json" -d '{ "messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5." }'
-
CodeGen MegaService
curl http://${host_ip}:7778/v1/codegen -H "Content-Type: application/json" -d '{ "messages": "def print_hello_world():" }'
-
Dataprep Microservice
If you want to update the default knowledge base, you can use the following commands:
Update Knowledge Base via Local File Upload:
curl -X POST "http://${host_ip}:6007/v1/dataprep" \ -H "Content-Type: multipart/form-data" \ -F "files=@./nke-10k-2023.pdf"
This command updates a knowledge base by uploading a local file for processing. Update the file path according to your environment.
Add Knowledge Base via HTTP Links:
curl -X POST "http://${host_ip}:6007/v1/dataprep" \ -H "Content-Type: multipart/form-data" \ -F 'link_list=["https://opea.dev"]'
This command updates a knowledge base by submitting a list of HTTP links for processing.
Also, you are able to get the file list that you uploaded:
curl -X POST "http://${host_ip}:6007/v1/dataprep/get_file" \ -H "Content-Type: application/json"
To delete the file/link you uploaded:
# delete link curl -X POST "http://${host_ip}:6007/v1/dataprep/delete_file" \ -d '{"file_path": "https://opea.dev.txt"}' \ -H "Content-Type: application/json" # delete file curl -X POST "http://${host_ip}:6007/v1/dataprep/delete_file" \ -d '{"file_path": "nke-10k-2023.pdf"}' \ -H "Content-Type: application/json" # delete all uploaded files and links curl -X POST "http://${host_ip}:6007/v1/dataprep/delete_file" \ -d '{"file_path": "all"}' \ -H "Content-Type: application/json"
-
Prompt Registry Microservice
If you want to update the default Prompts in the application for your user, you can use the following commands:
curl -X 'POST' \ http://{host_ip}:6018/v1/prompt/create \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "prompt_text": "test prompt", "user": "test" }'
Retrieve prompt from database based on user or prompt_id
curl -X 'POST' \ http://{host_ip}:6018/v1/prompt/get \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "user": "test"}' curl -X 'POST' \ http://{host_ip}:6018/v1/prompt/get \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "user": "test", "prompt_id":"{prompt_id returned from save prompt route above}"}'
Delete prompt from database based on prompt_id provided
curl -X 'POST' \ http://{host_ip}:6018/v1/prompt/delete \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "user": "test", "prompt_id":"{prompt_id to be deleted}"}'
-
Chat History Microservice
To validate the chatHistory Microservice, you can use the following commands.
Create a sample conversation and get the message ID.
curl -X 'POST' \ http://${host_ip}:6012/v1/chathistory/create \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "data": { "messages": "test Messages", "user": "test" } }'
Retrieve the conversation based on user or conversation id
curl -X 'POST' \ http://${host_ip}:6012/v1/chathistory/get \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "user": "test"}' curl -X 'POST' \ http://${host_ip}:6012/v1/chathistory/get \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "user": "test", "id":"{Conversation id to retrieve }"}'
Delete Conversation from database based on conversation id provided.
curl -X 'POST' \ http://${host_ip}:6012/v1/chathistory/delete \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "user": "test", "id":"{Conversation id to Delete}"}'
To access the frontend, open the following URL in your browser: http://{host_ip}:5174. By default, the UI runs on port 80 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the compose.yaml
file as shown below:
productivity-suite-xeon-react-ui-server:
image: opea/productivity-suite-react-ui-server:latest
...
ports:
- "5715:80" # Map port 5715 on the host to port 80 in the container.
Here is an example of running Productivity Suite
Here're some of the project's features:
- Start a Text Chat:Initiate a text chat with the ability to input written conversations, where the dialogue content can also be customized based on uploaded files.
- Context Awareness: The AI assistant maintains the context of the conversation, understanding references to previous statements or questions. This allows for more natural and coherent exchanges.
- File Upload or Remote Link: The choice between uploading locally or copying a remote link. Chat according to uploaded knowledge base.
- File Management:Uploaded File would get listed and user would be able add or remove file/links
- Clear Chat: Clear the record of the current dialog box without retaining the contents of the dialog box.
- Chat history: Historical chat records can still be retained after refreshing, making it easier for users to view the context.
- Conversational Chat: The application maintains a history of the conversation, allowing users to review previous messages and the AI to refer back to earlier points in the dialogue when necessary.
- Generate code: generate the corresponding code based on the current user's input.
- Summarizing Uploaded Files: Upload files from their local device, then click 'Generate Summary' to summarize the content of the uploaded file. The summary will be displayed on the 'Summary' box.
- Summarizing Text via Pasting: Paste the text to be summarized into the text box, then click 'Generate Summary' to produce a condensed summary of the content, which will be displayed in the 'Summary' box on the right.
- Scroll to Bottom: The summarized content will automatically scroll to the bottom.
-
Generate FAQs from Text via Pasting: Paste the text to into the text box, then click 'Generate FAQ' to produce a condensed FAQ of the content, which will be displayed in the 'FAQ' box below.
-
Generate FAQs from Text via txt file Upload: Upload the file in the Upload bar, then click 'Generate FAQ' to produce a condensed FAQ of the content, which will be displayed in the 'FAQ' box below.