diff --git a/intake_esm/core.py b/intake_esm/core.py index 4c940237..d9cb3786 100644 --- a/intake_esm/core.py +++ b/intake_esm/core.py @@ -127,10 +127,7 @@ def _set_groups_and_keys(self): internal_keys = self._grouped.groups.keys() public_keys = [] for key in internal_keys: - if isinstance(key, str): - p_key = key - else: - p_key = self.sep.join(str(v) for v in key) + p_key = key if isinstance(key, str) else self.sep.join(str(v) for v in key) public_keys.append(p_key) else: @@ -206,14 +203,13 @@ def _get_aggregation_info(self): for column in columns: self.df[column] = self.df[column].map(tuple) - aggregation_info = AggregationInfo( + return AggregationInfo( groupby_attrs, variable_column_name, aggregations, agg_columns, aggregation_dict, ) - return aggregation_info def keys(self) -> List: """ @@ -237,10 +233,9 @@ def key_template(self) -> str: string template used to create catalog entry keys """ if self.aggregation_info.groupby_attrs: - template = self.sep.join(self.aggregation_info.groupby_attrs) + return self.sep.join(self.aggregation_info.groupby_attrs) else: - template = self.sep.join(self.df.columns) - return template + return self.sep.join(self.df.columns) @property def df(self) -> pd.DataFrame: @@ -525,8 +520,7 @@ def _repr_html_(self): """ uniques = pd.DataFrame(self.nunique(), columns=['unique']) text = uniques._repr_html_() - output = f'

{self.esmcol_data["id"]} catalog with {len(self)} dataset(s) from {len(self.df)} asset(s):

{text}' - return output + return f'

{self.esmcol_data["id"]} catalog with {len(self)} dataset(s) from {len(self.df)} asset(s):

{text}' def _ipython_display_(self): """ @@ -760,9 +754,7 @@ def nunique(self) -> pd.Series: """ uniques = self.unique(self.df.columns.tolist()) - nuniques = {} - for key, val in uniques.items(): - nuniques[key] = val['count'] + nuniques = {key: val['count'] for key, val in uniques.items()} return pd.Series(nuniques) def unique(self, columns: Union[str, List] = None) -> Dict[str, Any]: diff --git a/intake_esm/merge_util.py b/intake_esm/merge_util.py index adfa2d6c..361fbc10 100644 --- a/intake_esm/merge_util.py +++ b/intake_esm/merge_util.py @@ -153,10 +153,7 @@ def union( def _to_nested_dict(df): """Converts a multiindex series to nested dict""" if hasattr(df.index, 'levels') and len(df.index.levels) > 1: - ret = {} - for k, v in df.groupby(level=0): - ret[k] = _to_nested_dict(v.droplevel(0)) - return ret + return {k: _to_nested_dict(v.droplevel(0)) for k, v in df.groupby(level=0)} return df.to_dict() diff --git a/intake_esm/search.py b/intake_esm/search.py index 9684dad3..4dfd77c7 100644 --- a/intake_esm/search.py +++ b/intake_esm/search.py @@ -15,8 +15,7 @@ def _unique(df, columns=None): def _find_unique(series): values = series.dropna().values - uniques = list(set(_flatten_list(values))) - return uniques + return list(set(_flatten_list(values))) x = df[columns].apply(_find_unique, result_type='reduce').to_dict() info = {} @@ -98,7 +97,7 @@ def search(df, require_all_on=None, **query): if index == condition: results.append(group) - if len(results) >= 1: + if results: return pd.concat(results).reset_index(drop=True) warn(message) @@ -133,18 +132,15 @@ def _is_pattern(value): def _flatten_list(data): for item in data: if isinstance(item, Iterable) and not isinstance(item, str): - for x in _flatten_list(item): - yield x + yield from _flatten_list(item) else: yield item def _get_columns_with_iterables(df): - if not df.empty: - has_iterables = ( - df.sample(20, replace=True).applymap(type).isin([list, tuple, set]).any().to_dict() - ) - columns_with_iterables = [column for column, check in has_iterables.items() if check] - else: - columns_with_iterables = [] - return columns_with_iterables + if df.empty: + return [] + has_iterables = ( + df.sample(20, replace=True).applymap(type).isin([list, tuple, set]).any().to_dict() + ) + return [column for column, check in has_iterables.items() if check] diff --git a/intake_esm/source.py b/intake_esm/source.py index 2fd0c811..beb30eb4 100644 --- a/intake_esm/source.py +++ b/intake_esm/source.py @@ -145,8 +145,7 @@ def __init__( def __repr__(self): """Make string representation of object.""" - contents = f'