-
Notifications
You must be signed in to change notification settings - Fork 38
/
malicious_agent.py
executable file
·578 lines (488 loc) · 24 KB
/
malicious_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
#########################
# Purpose: Implements all attacks
########################
import warnings
warnings.filterwarnings("ignore")
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import logging
tf.get_logger().setLevel(logging.ERROR)
import numpy as np
from utils.mnist import model_mnist
from utils.eval_utils import eval_minimal, mal_eval_single, mal_eval_multiple
from utils.io_utils import file_write
from utils.census_utils import census_model_1
from utils.dist_utils import est_accuracy, weight_constrain
from utils.cifar_utils import cifar10_model
import global_vars as gv
def benign_train(x, y, agent_model, logits, X_shard, Y_shard, sess, shared_weights):
args = gv.init()
print('Training benign model at malicious agent')
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=y, logits=logits))
prediction = tf.nn.softmax(logits)
if args.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(
learning_rate=args.eta).minimize(loss)
elif args.optimizer == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(
learning_rate=args.eta).minimize(loss)
if args.k > 1:
config = tf.ConfigProto(gpu_options=gv.gpu_options)
# config.gpu_options.allow_growth = True
temp_sess = tf.Session(config=config)
elif args.k == 1:
temp_sess = tf.Session()
tf.keras.backend.set_session(temp_sess)
temp_sess.run(tf.global_variables_initializer())
agent_model.set_weights(shared_weights)
shard_size = len(X_shard)
if args.mal_E > args.E:
num_mal_epochs = args.mal_E
else:
num_mal_epochs = args.E
for step in range(int(num_mal_epochs * shard_size / args.B)):
offset = (step * args.B) % (shard_size - args.B)
X_batch = X_shard[offset: (offset + args.B)]
Y_batch = Y_shard[offset: (offset + args.B)]
Y_batch_uncat = np.argmax(Y_batch, axis=1)
_, loss_val = temp_sess.run([optimizer, loss], feed_dict={
x: X_batch, y: Y_batch_uncat})
# if step % 100 == 0:
# print loss_val
final_weights = agent_model.get_weights()
final_delta = final_weights - shared_weights
agent_model.set_weights(final_weights)
num_steps_temp = int(shard_size / args.B)
offset_temp = 0
loss_val_shard = 0.0
for step_temp in range(num_steps_temp):
offset_temp = (offset + step_temp * args.B) % (shard_size - args.B)
X_batch = X_shard[offset: (offset + args.B)]
Y_batch = Y_shard[offset: (offset + args.B)]
Y_batch_uncat = np.argmax(Y_batch, axis=1)
loss_val_shard += temp_sess.run(
loss, feed_dict={x: X_batch, y: Y_batch_uncat})
loss_val_shard = loss_val_shard / num_steps_temp
print('Average loss on the data shard %s' % loss_val_shard)
temp_sess.close()
return final_delta, loss_val_shard
def data_poison_train(sess, optimizer, loss, mal_optimizer, mal_loss, x, y, logits, X_shard, Y_shard, mal_data_X,
mal_data_Y, agent_model, num_steps, start_offset):
step = 0
args = gv.init()
data_rep = 10
mal_data_X_reps = np.tile(mal_data_X[0, :, :, :], (data_rep, 1, 1, 1))
# print mal_data_X_reps.shape
mal_data_Y_reps = np.tile(mal_data_Y, data_rep)
# print mal_data_Y_reps
shard_size = len(X_shard)
X_shard = np.concatenate((X_shard, mal_data_X_reps))
index_rand = np.random.permutation(len(X_shard))
X_shard = X_shard[index_rand]
Y_shard_uncat = np.argmax(Y_shard, axis=1)
Y_shard_uncat = np.concatenate((Y_shard_uncat, mal_data_Y_reps))
Y_shard_uncat = Y_shard_uncat[index_rand]
shard_size = len(X_shard)
while step < num_steps:
offset = (start_offset + step * args.B) % (shard_size - args.B)
X_batch = X_shard[offset: (offset + args.B)]
Y_batch_uncat = Y_shard_uncat[offset: (offset + args.B)]
sess.run(optimizer, feed_dict={x: X_batch, y: Y_batch_uncat})
step += 1
if step % 100 == 0:
loss_val = sess.run(
[loss], feed_dict={x: X_batch, y: Y_batch_uncat})
mal_loss_val = sess.run(
[loss], feed_dict={x: mal_data_X, y: mal_data_Y})
print('Benign: Loss - %s; Mal: Loss - %s' %
(loss_val, mal_loss_val))
def concat_train(sess, optimizer, loss, mal_optimizer, mal_loss, x, y, logits, X_shard, Y_shard, mal_data_X, mal_data_Y,
agent_model, num_steps, start_offset):
step = 0
args = gv.init()
shard_size = len(X_shard)
while step < num_steps:
weight_step_start = np.array(agent_model.get_weights())
# Benign step
offset = (start_offset + step * args.B) % (shard_size - args.B)
X_batch = X_shard[offset: (offset + args.B)]
Y_batch = Y_shard[offset: (offset + args.B)]
Y_batch_uncat = np.argmax(Y_batch, axis=1)
sess.run(optimizer, feed_dict={x: X_batch, y: Y_batch_uncat})
ben_delta_step = agent_model.get_weights() - weight_step_start
# Mal step
agent_model.set_weights(weight_step_start)
mal_loss_curr = sess.run([mal_loss], feed_dict={x: mal_data_X, y: mal_data_Y})
if mal_loss_curr > 0.0:
sess.run(mal_optimizer, feed_dict={x: mal_data_X, y: mal_data_Y})
mal_delta_step = agent_model.get_weights() - weight_step_start
overall_delta_step = ben_delta_step + args.mal_boost * mal_delta_step
agent_model.set_weights(weight_step_start + overall_delta_step)
else:
agent_model.set_weights(weight_step_start + ben_delta_step)
if step % 100 == 0:
loss_val = sess.run(
[loss], feed_dict={x: X_batch, y: Y_batch_uncat})
mal_loss_val = sess.run(
[mal_loss], feed_dict={x: mal_data_X, y: mal_data_Y})
print('Benign: Loss - %s; Mal: Loss - %s' %
(loss_val, mal_loss_val))
step += 1
def alternate_train(sess, t, optimizer, loss, mal_optimizer, mal_loss, x, y,
logits, X_shard, Y_shard, mal_data_X, mal_data_Y,
agent_model, num_steps, start_offset, loss1=None, loss2=None):
args = gv.init()
step = 0
num_local_steps = args.ls
shard_size = len(X_shard)
curr_weights = agent_model.get_weights()
delta_mal_local = []
for l in range(len(curr_weights)):
layer_shape = curr_weights[l].shape
delta_mal_local.append(np.zeros(shape=layer_shape))
while step < num_steps:
offset = (start_offset + step * args.B) % (shard_size - args.B)
# Benign
if step < num_steps:
for l_step in range(num_local_steps):
# training
# print offset
offset = (offset + l_step * args.B) % (shard_size - args.B)
X_batch = X_shard[offset: (offset + args.B)]
Y_batch = Y_shard[offset: (offset + args.B)]
Y_batch_uncat = np.argmax(Y_batch, axis=1)
if 'dist' in args.mal_strat:
loss1_val, loss2_val, loss_val = sess.run(
[loss1, loss2, loss], feed_dict={x: X_batch, y: Y_batch_uncat})
sess.run([optimizer], feed_dict={x: X_batch, y: Y_batch_uncat})
else:
loss_val = sess.run(
[loss], feed_dict={x: X_batch, y: Y_batch_uncat})
sess.run(
[optimizer], feed_dict={x: X_batch, y: Y_batch_uncat})
mal_loss_val_bef = sess.run([mal_loss], feed_dict={
x: mal_data_X, y: mal_data_Y})
# Malicious, only if mal loss is non-zero
print(mal_loss_val_bef)
if step >= 0 and mal_loss_val_bef[0] > 0.0:
# print('Boosting mal at step %s' % step)
weights_ben_local = np.array(agent_model.get_weights())
if 'dist' in args.mal_strat:
sess.run([mal_optimizer], feed_dict={
x: mal_data_X, y: mal_data_Y})
else:
sess.run([mal_optimizer], feed_dict={
x: mal_data_X, y: mal_data_Y})
if 'auto' in args.mal_strat:
step_weight_end = agent_model.get_weights()
if 'wt_o' in args.mal_strat:
for l in range(len(delta_mal_local)):
if l % 2 == 0:
delta_mal_local[l] += (1 / args.mal_boost) * (step_weight_end[l] - weights_ben_local[l])
else:
delta_mal_local += (1 / args.mal_boost) * (step_weight_end - weights_ben_local)
agent_model.set_weights(curr_weights + (1 / args.mal_boost) * delta_mal_local)
else:
delta_mal_local = agent_model.get_weights() - weights_ben_local
if 'wt_o' in args.mal_strat:
# Boosting only weights
boosted_delta = delta_mal_local.copy()
for l in range(len(delta_mal_local)):
if l % 2 == 0:
boosted_delta[l] = args.mal_boost * delta_mal_local[l]
boosted_weights = weights_ben_local + boosted_delta
else:
boosted_weights = weights_ben_local + args.mal_boost * delta_mal_local
agent_model.set_weights(boosted_weights)
mal_loss_val_aft = sess.run([mal_loss], feed_dict={
x: mal_data_X, y: mal_data_Y})
if step % 10 == 0 and 'dist' in args.mal_strat:
print('Benign: Loss1 - %s, Loss2 - %s, Loss - %s; Mal: Loss_bef - %s Loss_aft - %s' %
(loss1_val, loss2_val, loss_val, mal_loss_val_bef, mal_loss_val_aft))
elif step % 10 == 0 and 'dist' not in args.mal_strat:
print('Benign: Loss - %s; Mal: Loss_bef - %s, Loss_aft - %s' %
(loss_val, mal_loss_val_bef, mal_loss_val_aft))
if step % 100 == 0 and t < 5:
np.save(gv.dir_name + 'mal_delta_t%s_step%s.npy' %
(t, step), delta_mal_local)
step += num_local_steps
return delta_mal_local
def mal_single_algs(x, y, logits, agent_model, shared_weights, sess, mal_data_X, mal_data_Y,
t, mal_visible, X_shard, Y_shard, pre_theta):
# alg_num = 2
args = gv.init()
alpha_m = 1.0 / args.k
print(mal_visible)
if args.gar == 'avg':
delta_other_prev = est_accuracy(mal_visible, t)
if pre_theta is None:
start_weights = shared_weights
constrain_weights = shared_weights
else:
start_weights = pre_theta - gv.moving_rate * (pre_theta - shared_weights)
constrain_weights = pre_theta - gv.moving_rate * (pre_theta - shared_weights)
if len(mal_visible) >= 1 and 'prev_1' in args.mal_strat:
# Starting with weights that account for other agents
start_weights = shared_weights + delta_other_prev
print('Alg 1: Adding benign estimate')
if 'dist' in args.mal_strat:
if 'dist_oth' in args.mal_strat and t >= 1:
constrain_weights = start_weights + delta_other_prev
else:
final_delta, _ = benign_train(
x, y, agent_model, logits, X_shard, Y_shard, sess, shared_weights)
constrain_weights = start_weights + final_delta
tf.keras.backend.set_session(sess)
elif 'add_ben' in args.mal_strat:
ben_delta, loss_val_shard = benign_train(
x, y, agent_model, logits, X_shard, Y_shard, sess, shared_weights)
elif 'unlimited' in args.mal_strat:
ben_delta, loss_val_shard = benign_train(
x, y, agent_model, logits, X_shard, Y_shard, sess, shared_weights)
loss1 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=y, logits=logits))
mal_loss1 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=y, logits=logits))
prediction = tf.nn.softmax(logits)
if 'dist' in args.mal_strat:
# Adding weight based regularization
loss, loss2, mal_loss = weight_constrain(loss1, mal_loss1, agent_model, constrain_weights, t)
else:
loss = loss1
mal_loss = mal_loss1
loss2 = None
weights_pl = None
if 'adam' in args.optimizer:
optimizer = tf.train.AdamOptimizer(learning_rate=args.eta).minimize(loss)
mal_optimizer = tf.train.AdamOptimizer(
learning_rate=args.eta).minimize(mal_loss)
elif 'sgd' in args.optimizer:
mal_optimizer = tf.train.GradientDescentOptimizer(
learning_rate=args.eta).minimize(mal_loss)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=args.eta).minimize(loss)
sess.run(tf.global_variables_initializer())
if pre_theta is None:
agent_model.set_weights(shared_weights)
else:
theta = pre_theta - gv.moving_rate * (pre_theta - shared_weights)
agent_model.set_weights(theta)
print('loaded shared weights for malicious agent')
mal_data_Y = mal_data_Y.reshape((len(mal_data_Y),))
shard_size = len(X_shard)
delta_mal = []
for l in range(len(start_weights)):
layer_shape = start_weights[l].shape
delta_mal.append(np.zeros(shape=layer_shape))
# Not including training loss
if 'train' not in args.mal_strat:
num_mal_epochs = args.mal_E
step = 0
mal_loss_val = 100
while mal_loss_val > 1e-6 or step < num_mal_epochs:
step_weight_start = np.array(agent_model.get_weights())
sess.run(mal_optimizer, feed_dict={x: mal_data_X, y: mal_data_Y})
if 'auto' in args.mal_strat:
step_weight_end = agent_model.get_weights()
delta_mal += (1 / args.mal_boost) * (step_weight_end - step_weight_start)
agent_model.set_weights(start_weights + (1 / args.mal_boost) * delta_mal)
if step % 100 == 0:
mal_obj_pred, mal_loss_val = sess.run([prediction, mal_loss], feed_dict={x: mal_data_X, y: mal_data_Y})
if 'single' in args.mal_obj:
print('Target:%s w conf.: %s, Curr_pred at step %s:%s, Loss: %s' %
(
mal_data_Y, mal_obj_pred[:, mal_data_Y], step, np.argmax(mal_obj_pred, axis=1),
mal_loss_val))
elif 'multiple' in args.mal_obj:
suc_count_local = np.sum(mal_data_Y == np.argmax(mal_obj_pred, axis=1))
print('%s of %s targets achieved at step %s, Loss: %s' % (
suc_count_local, args.mal_num, step, mal_loss_val))
step += 1
# Including training loss
elif 'train' in args.mal_strat:
# mal epochs different from benign epochs
if args.mal_E > args.E:
num_mal_epochs = args.mal_E
else:
num_mal_epochs = args.E
# fixed number of steps
if args.steps is not None:
num_steps = args.steps
start_offset = (t * args.B * args.steps) % (shard_size - args.B)
else:
num_steps = num_mal_epochs * shard_size / args.B
start_offset = 0
if 'alternate' in args.mal_strat:
if 'unlimited' not in args.mal_strat:
delta_mal_ret = alternate_train(sess, t, optimizer, loss, mal_optimizer, mal_loss, x, y, logits,
X_shard, Y_shard, mal_data_X,
mal_data_Y, agent_model, num_steps, start_offset, loss1, loss2)
elif 'unlimited' in args.mal_strat:
# train until loss matches that of benign trained
alternate_train_unlimited(sess, t, optimizer, loss, mal_optimizer, mal_loss, x, y, logits, X_shard,
Y_shard, mal_data_X,
mal_data_Y, agent_model, num_steps, start_offset, loss_val_shard, loss1,
loss2)
elif 'concat' in args.mal_strat:
# training with concatenation
concat_train(sess, optimizer, loss, mal_optimizer, mal_loss, x, y, logits, X_shard, Y_shard, mal_data_X,
mal_data_Y, agent_model, num_steps, start_offset)
elif 'data_poison' in args.mal_strat:
num_steps += (num_mal_epochs * args.data_rep) / args.B
data_poison_train(sess, optimizer, loss, mal_optimizer, mal_loss, x, y, logits,
X_shard, Y_shard, mal_data_X, mal_data_Y, agent_model, num_steps, start_offset)
if 'auto' not in args.mal_strat:
# Explicit boosting
delta_naive_mal = agent_model.get_weights() - start_weights
if len(mal_visible) >= 1 and 'prev_2' in args.mal_strat:
print('Alg 2: Deleting benign estimate')
# Algorithm 2: Adjusting weights after optimzation
delta_mal = delta_naive_mal - delta_other_prev
elif len(mal_visible) < 1 or 'prev_2' not in args.mal_strat:
delta_mal = delta_naive_mal
# Boosting weights
if 'no_boost' in args.mal_strat or 'alternate' in args.mal_strat or 'concat' in args.mal_strat or 'data_poison' in args.mal_strat:
print('No boosting')
delta_mal = delta_mal
else:
print('Boosting by %s' % args.mal_boost)
delta_mal = args.mal_boost * delta_mal
if 'add_ben' in args.mal_strat:
print('Direct addition of benign update')
delta_mal += ben_delta
else:
# Implicit boosting
print('In auto mode')
delta_naive_mal = alpha_m * delta_mal_ret
delta_mal = delta_mal_ret
return delta_mal, delta_naive_mal
def mal_all_algs(x, y, logits, agent_model, shared_weights, sess, mal_data_X, mal_data_Y, t):
tf.keras.backend.set_learning_phase(1)
args = gv.init()
data_len = len(mal_data_X)
loss = -1.0 * tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=y, logits=logits))
optimizer = tf.train.AdamOptimizer(learning_rate=args.eta).minimize(loss)
# optimizer = tf.train.GradientDescentOptimizer(learning_rate=args.eta).minimize(loss)
sess.run(tf.global_variables_initializer())
agent_model.set_weights(shared_weights)
print('loaded shared weights for malicious agent')
num_mal_epochs = args.E
for step in range(num_mal_epochs * data_len / gv.BATCH_SIZE):
offset = (step * gv.BATCH_SIZE) % (data_len - gv.BATCH_SIZE)
X_batch = mal_data_X[offset: (offset + gv.BATCH_SIZE)]
Y_batch = mal_data_Y[offset: (offset + gv.BATCH_SIZE)]
Y_batch_uncat = np.argmax(Y_batch, axis=1)
sess.run(optimizer, feed_dict={x: X_batch, y: Y_batch_uncat})
if step % 10 == 0:
curr_loss = sess.run(
loss, feed_dict={x: X_batch, y: Y_batch_uncat})
print('Malicious Agent, Step %s, Loss %s' % (step, curr_loss))
final_delta = agent_model.get_weights() - shared_weights
return final_delta
def mal_agent(X_shard, Y_shard, mal_data_X, mal_data_Y, t, gpu_id, return_dict,
mal_visible, X_test, Y_test):
args = gv.init()
shared_weights = np.load(gv.dir_name + 'global_weights_t%s.npy' % t, allow_pickle=True)
if 'theta{}'.format(gv.mal_agent_index) in return_dict.keys():
pre_theta = return_dict['theta{}'.format(gv.mal_agent_index)]
else:
pre_theta = None
holdoff_flag = 0
if 'holdoff' in args.mal_strat:
print('Checking holdoff')
if 'single' in args.mal_obj:
target, target_conf, actual, actual_conf = mal_eval_single(mal_data_X, mal_data_Y, shared_weights)
if target_conf == 1:
print('Holding off')
holdoff_flag = 1
# tf.reset_default_graph()
tf.keras.backend.set_learning_phase(1)
print('Malicious Agent on GPU %s' % gpu_id)
# set environment
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
if args.dataset == 'census':
x = tf.placeholder(shape=(None,
gv.DATA_DIM), dtype=tf.float32)
y = tf.placeholder(dtype=tf.int64)
else:
x = tf.placeholder(shape=(None,
gv.IMAGE_ROWS,
gv.IMAGE_COLS,
gv.NUM_CHANNELS), dtype=tf.float32)
y = tf.placeholder(dtype=tf.int64)
if 'MNIST' in args.dataset:
agent_model = model_mnist(type=args.model_num)
elif args.dataset == 'CIFAR-10':
agent_model = cifar10_model()
elif args.dataset == 'census':
agent_model = census_model_1()
else:
return
logits = agent_model(x)
prediction = tf.nn.softmax(logits)
eval_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=y, logits=logits))
config = tf.ConfigProto(gpu_options=gv.gpu_options)
# config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
tf.keras.backend.set_session(sess)
if t >= args.mal_delay and holdoff_flag == 0:
if args.mal_obj == 'all':
final_delta = mal_all_algs(
x, y, logits, agent_model, shared_weights, sess, mal_data_X, mal_data_Y, t)
elif args.mal_obj == 'single' or 'multiple' in args.mal_obj:
final_delta, penul_delta = mal_single_algs(x, y, logits, agent_model, shared_weights, sess,
mal_data_X,
mal_data_Y, t,
mal_visible, X_shard, Y_shard, pre_theta)
else:
return
elif t < args.mal_delay or holdoff_flag == 1:
print('Delay/Hold-off')
final_delta, _ = benign_train(
x, y, agent_model, logits, X_shard, Y_shard, sess, shared_weights)
else:
return
final_weights = shared_weights + final_delta
agent_model.set_weights(final_weights)
print('---Eval at mal agent---')
if 'single' in args.mal_obj:
target, target_conf, actual, actual_conf = mal_eval_single(mal_data_X, mal_data_Y, final_weights)
print('Target:%s with conf. %s, Curr_pred on malicious model for iter %s:%s with conf. %s' % (
target, target_conf, t, actual, actual_conf))
elif 'multiple' in args.mal_obj:
suc_count_local = mal_eval_multiple(mal_data_X, mal_data_Y, final_weights)
print('%s of %s targets achieved' %
(suc_count_local, args.mal_num))
eval_success, eval_loss = eval_minimal(X_test, Y_test, final_weights)
return_dict['mal_success'] = eval_success
print('Malicious Agent: success {}, loss {}'.format(
eval_success, eval_loss))
write_dict = dict()
# just to maintain ordering
write_dict['t'] = t + 1
write_dict['eval_success'] = eval_success
write_dict['eval_loss'] = eval_loss
file_write(write_dict, purpose='mal_eval_loss')
return_dict[str(gv.mal_agent_index)] = np.array(final_delta)
return_dict["theta{}".format(gv.mal_agent_index)] = np.array(final_weights)
np.save(gv.dir_name + 'mal_delta_t%s.npy' % t, final_delta)
if 'auto' in args.mal_strat or 'multiple' in args.mal_obj:
penul_weights = shared_weights + penul_delta
if 'single' in args.mal_obj:
target, target_conf, actual, actual_conf = mal_eval_single(mal_data_X, mal_data_Y, penul_weights)
print(
'Penul weights ---- Target:%s with conf. %s, Curr_pred on malicious model for iter %s:%s with conf. %s' % (
target, target_conf, t, actual, actual_conf))
elif 'multiple' in args.mal_obj:
suc_count_local = mal_eval_multiple(mal_data_X, mal_data_Y, penul_weights)
print('%s of %s targets achieved' %
(suc_count_local, args.mal_num))
eval_success, eval_loss = eval_minimal(X_test, Y_test, penul_weights)
print('Penul weights ---- Malicious Agent: success {}, loss {}'.format(
eval_success, eval_loss))
return