-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
188 lines (175 loc) · 9.23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import time
import datetime
import gc
import argparse
import torch
import torch.cuda
from src.server import *
from src.client import *
import src.datasets as my_datasets
# from dataclasses import dataclass
from src.splitter import *
from src.utils import *
from src.dataset_bundle import *
from wilds.common.data_loaders import get_eval_loader
from wilds import get_dataset
import wandb
from wandb_env import WANDB_ENTITY, WANDB_PROJECT
"""
The main file function:
1. Load the hyperparameter dict.
2. Initialize logger
3. Initialize data (preprocess, data splits, etc.)
4. Initialize clients.
5. Initialize Server.
6. Register clients at the server.
7. Start the server.
"""
def main(args):
hparam = vars(args)
config_file = args.config_file
with open(config_file) as fh:
config = json.load(fh)
wandb_project = WANDB_PROJECT + '_' + hparam['dataset']
# setup WanDB
if not args.no_wandb:
wandb.init(project=wandb_project,
entity=WANDB_ENTITY,
config=hparam)
wandb.run.log_code()
config['wandb'] = True
else:
config['wandb'] = False
hparam.update(config)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
seed = hparam['seed']
set_seed(seed)
data_path = hparam['data_path']
if not os.path.exists(data_path + "opt_dict/"): os.makedirs(data_path + "opt_dict/")
if not os.path.exists(data_path + "models/"): os.makedirs(data_path + "models/")
# optimizer preprocess
if hparam['optimizer'] == 'torch.optim.SGD':
hparam['optimizer_config'] = {'lr':hparam['lr'], 'momentum': hparam['momentum'], 'weight_decay': hparam['weight_decay']}
elif hparam['optimizer'] == 'torch.optim.Adam' or hparam['optimizer'] == 'torch.optim.AdamW':
hparam['optimizer_config'] = {'lr':hparam['lr'], 'eps': hparam['eps'], 'weight_decay': hparam['weight_decay']}
# initialize data
if hparam['dataset'].lower() == 'pacs':
dataset = my_datasets.PACS(version='1.0', root_dir=hparam['dataset_path'], download=True)
elif hparam['dataset'].lower() == 'officehome':
dataset = my_datasets.OfficeHome(version='1.0', root_dir=hparam['dataset_path'], download=True, split_scheme=hparam["split_scheme"])
elif hparam['dataset'].lower() == 'femnist':
dataset = my_datasets.FEMNIST(version='1.0', root_dir=hparam['dataset_path'], download=True)
elif hparam['dataset'].lower() == 'celeba':
dataset = get_dataset(dataset="celebA", root_dir=hparam['dataset_path'], download=True)
else:
dataset = get_dataset(dataset=hparam["dataset"].lower(), root_dir=hparam['dataset_path'], download=True)
# if server_config['algorithm'] == "FedDG":
# # make it easier to hash fourier transformation
# indices = torch.arange(len(dataset)).reshape(-1,1)
# new_metadata_array = torch.cat((dataset.metadata_array, indices), dim=1)
# dataset._metadata_array = new_metadata_array
if hparam['client_method'] == "FedSR":
ds_bundle = eval(hparam["dataset"])(dataset, probabilistic=True)
else:
if hparam['dataset'].lower() == 'py150' or hparam['dataset'].lower() == 'civilcomments':
ds_bundle = eval(hparam["dataset"])(dataset, probabilistic=False)
else:
ds_bundle = eval(hparam["dataset"])(dataset, probabilistic=False)
if hparam['server_method'] == "FedDG":
if hparam["dataset"].lower() == "iwildcam":
dataset = my_datasets.FourierIwildCam(root_dir=hparam['dataset_path'], download=True)
total_subset = dataset.get_subset('train', transform=ds_bundle.test_transform)
elif hparam["dataset"].lower() == "pacs":
dataset = my_datasets.FourierPACS(root_dir=hparam['dataset_path'], download=True, split_scheme=hparam["split_scheme"])
total_subset = dataset.get_subset('train', transform=ds_bundle.test_transform)
elif hparam["dataset"].lower() == "celeba":
dataset = my_datasets.FourierCelebA(root_dir=hparam['dataset_path'], download=True, split_scheme=hparam["split_scheme"])
total_subset = dataset.get_subset('train', transform=ds_bundle.test_transform)
elif hparam["dataset"].lower() == "camelyon17":
dataset = my_datasets.FourierCamelyon17(root_dir=hparam['dataset_path'], download=True, split_scheme=hparam["split_scheme"])
total_subset = dataset.get_subset('train', transform=ds_bundle.test_transform)
elif hparam["dataset"].lower() == "femnist":
dataset = my_datasets.FourierFEMNIST(root_dir=hparam['dataset_path'], download=True, split_scheme=hparam["split_scheme"])
total_subset = dataset.get_subset('train', transform=ds_bundle.test_transform)
else:
raise NotImplementedError
else:
total_subset = dataset.get_subset('train', transform=ds_bundle.train_transform)
testloader = {}
for split in dataset.split_names:
if split != 'train':
ds = dataset.get_subset(split, transform=ds_bundle.test_transform)
dl = get_eval_loader(loader='standard', dataset=ds, batch_size=hparam["batch_size"])
testloader[split] = dl
sampler = RandomSampler(total_subset, replacement=True)
global_dataloader = DataLoader(total_subset, batch_size=hparam["batch_size"], sampler=sampler)
# # DS
# out_test_dataset, test_train = RandomSplitter(ratio=0.5, seed=seed).split(out_test_dataset)
# out_test_dataset.transform = ds_bundle.test_transform
# out_test_dataloader = get_eval_loader(loader='standard', dataset=out_test_dataset, batch_size=global_config["batch_size"])
# if global_config['cheat']:
# total_subset = concat_subset(total_subset, test_train)
# training_datasets = [total_subset]
# print(len(total_subset), len(in_validation_dataset), len(lodo_validation_dataset), len(in_test_dataset), len(out_test_dataset))
num_shards = hparam['num_clients']
if num_shards == 1:
training_datasets = [total_subset]
elif num_shards > 1:
training_datasets = NonIIDSplitter(num_shards=num_shards, iid=hparam['iid'], seed=seed).split(dataset.get_subset('train'), ds_bundle.groupby_fields, transform=ds_bundle.train_transform)
else:
raise ValueError("num_shards should be greater or equal to 1, we got {}".format(num_shards))
# initialize client
clients = []
for k in tqdm(range(hparam["num_clients"]), leave=False):
client = eval(hparam["client_method"])(k, device, training_datasets[k], ds_bundle, hparam)
clients.append(client)
message = f"successfully initialize all clients!"
logging.info(message)
del message; gc.collect()
# initialize server (model should be initialized in the server. )
central_server = eval(hparam["server_method"])(device, ds_bundle, hparam)
if hparam['server_method'] == "FedDG":
central_server.set_amploader(global_dataloader)
if hparam['start_epoch'] == 0:
central_server.setup_model(None, 0)
else:
central_server.setup_model(hparam['resume_file'], hparam['start_epoch'])
central_server.register_clients(clients)
central_server.register_testloader(testloader)
# do federated learning
central_server.fit()
# bye!
message = "...done all learning process!\n...exit program!"
logging.info(message)
time.sleep(3)
exit()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='FedDG Benchmark')
parser.add_argument('--config_file', help='config file', default="config.json")
parser.add_argument('--no_wandb', default=False, action="store_true")
parser.add_argument('--seed', default=1001, type=int)
parser.add_argument('--num_clients', default=1, type=int)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--iid', default=1, type=float)
parser.add_argument('--server_method', default='FedAvg')
parser.add_argument('--fraction', default=1, type=float)
parser.add_argument('--f', default=10, type=int)
parser.add_argument('--num_rounds', default=20, type=int)
parser.add_argument('--dataset', default='PACS')
parser.add_argument('--split_scheme', default='official')
parser.add_argument('--client_method', default='ERM')
parser.add_argument('--local_epochs', default=1, type=int)
parser.add_argument('--n_groups_per_batch', default=2, type=int)
parser.add_argument('--optimizer', default='torch.optim.Adam')
parser.add_argument('--lr', default=3e-5, type=float)
parser.add_argument('--momentum', default=0, type=float)
parser.add_argument('--weight_decay', default=0, type=float)
parser.add_argument('--eps', default=1e-8, type=float)
parser.add_argument('--hparam1', default=1, type=float, help="irm: lambda; rex: lambda; fish: meta_lr; mixup: alpha; mmd: lambda; coral: lambda; groupdro: groupdro_eta; fedprox: mu; feddg: ratio; fedadg: alpha; fedgma: mask_threshold; fedsr: l2_regularizer;")
parser.add_argument('--hparam2', default=1, type=float, help="fedsr: cmi_regularizer; irm: penalty_anneal_iters; fedadg: second_local_epochs")
parser.add_argument('--hparam3', default=0, type=float)
parser.add_argument('--hparam4', default=0, type=float)
parser.add_argument('--hparam5', default=0, type=float)
args = parser.parse_args()
main(args)