forked from curvefi/curve-contract
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStableSwapCompound.vy
685 lines (557 loc) · 22.5 KB
/
StableSwapCompound.vy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
# @version 0.1.0b16
# (c) Curve.Fi, 2020
# External Contracts
contract ERC20m:
def totalSupply() -> uint256: constant
def allowance(_owner: address, _spender: address) -> uint256: constant
def transfer(_to: address, _value: uint256) -> bool: modifying
def transferFrom(_from: address, _to: address, _value: uint256) -> bool: modifying
def approve(_spender: address, _value: uint256) -> bool: modifying
def mint(_to: address, _value: uint256): modifying
def burn(_value: uint256): modifying
def burnFrom(_to: address, _value: uint256): modifying
def name() -> string[64]: constant
def symbol() -> string[32]: constant
def decimals() -> uint256: constant
def balanceOf(arg0: address) -> uint256: constant
def set_minter(_minter: address): modifying
# External Contracts
contract cERC20:
def totalSupply() -> uint256: constant
def allowance(_owner: address, _spender: address) -> uint256: constant
def transfer(_to: address, _value: uint256) -> bool: modifying
def transferFrom(_from: address, _to: address, _value: uint256) -> bool: modifying
def approve(_spender: address, _value: uint256) -> bool: modifying
def burn(_value: uint256): modifying
def burnFrom(_to: address, _value: uint256): modifying
def name() -> string[64]: constant
def symbol() -> string[32]: constant
def decimals() -> uint256: constant
def balanceOf(arg0: address) -> uint256: constant
def mint(mintAmount: uint256) -> uint256: modifying
def redeem(redeemTokens: uint256) -> uint256: modifying
def redeemUnderlying(redeemAmount: uint256) -> uint256: modifying
def exchangeRateStored() -> uint256: constant
def exchangeRateCurrent() -> uint256: modifying
def supplyRatePerBlock() -> uint256: constant
def accrualBlockNumber() -> uint256: constant
from vyper.interfaces import ERC20
# Tether transfer-only ABI
contract USDT:
def transfer(_to: address, _value: uint256): modifying
def transferFrom(_from: address, _to: address, _value: uint256): modifying
# This can (and needs to) be changed at compile time
N_COINS: constant(int128) = 2 # <- change
ZERO256: constant(uint256) = 0 # This hack is really bad XXX
ZEROS: constant(uint256[N_COINS]) = [ZERO256, ZERO256] # <- change
USE_LENDING: constant(bool[N_COINS]) = [True, True]
# Flag "ERC20s" which don't return from transfer() and transferFrom()
TETHERED: constant(bool[N_COINS]) = [False, False]
FEE_DENOMINATOR: constant(uint256) = 10 ** 10
LENDING_PRECISION: constant(uint256) = 10 ** 18
PRECISION: constant(uint256) = 10 ** 18 # The precision to convert to
PRECISION_MUL: constant(uint256[N_COINS]) = [convert(1, uint256), convert(1000000000000, uint256)]
# PRECISION_MUL: constant(uint256[N_COINS]) = [
# PRECISION / convert(PRECISION, uint256), # DAI
# PRECISION / convert(10 ** 6, uint256), # USDC
# PRECISION / convert(10 ** 6, uint256)] # USDT
admin_actions_delay: constant(uint256) = 3 * 86400
# Events
TokenExchange: event({buyer: indexed(address), sold_id: int128, tokens_sold: uint256, bought_id: int128, tokens_bought: uint256})
TokenExchangeUnderlying: event({buyer: indexed(address), sold_id: int128, tokens_sold: uint256, bought_id: int128, tokens_bought: uint256})
AddLiquidity: event({provider: indexed(address), token_amounts: uint256[N_COINS], fees: uint256[N_COINS], invariant: uint256, token_supply: uint256})
RemoveLiquidity: event({provider: indexed(address), token_amounts: uint256[N_COINS], fees: uint256[N_COINS], token_supply: uint256})
RemoveLiquidityImbalance: event({provider: indexed(address), token_amounts: uint256[N_COINS], fees: uint256[N_COINS], invariant: uint256, token_supply: uint256})
CommitNewAdmin: event({deadline: indexed(timestamp), admin: indexed(address)})
NewAdmin: event({admin: indexed(address)})
CommitNewParameters: event({deadline: indexed(timestamp), A: uint256, fee: uint256, admin_fee: uint256})
NewParameters: event({A: uint256, fee: uint256, admin_fee: uint256})
coins: public(address[N_COINS])
underlying_coins: public(address[N_COINS])
balances: public(uint256[N_COINS])
A: public(uint256) # 2 x amplification coefficient
fee: public(uint256) # fee * 1e10
admin_fee: public(uint256) # admin_fee * 1e10
max_admin_fee: constant(uint256) = 5 * 10 ** 9
max_fee: constant(uint256) = 5 * 10 ** 9
max_A: constant(uint256) = 10 ** 6
owner: public(address)
token: ERC20m
admin_actions_deadline: public(timestamp)
transfer_ownership_deadline: public(timestamp)
future_A: public(uint256)
future_fee: public(uint256)
future_admin_fee: public(uint256)
future_owner: public(address)
kill_deadline: timestamp
kill_deadline_dt: constant(uint256) = 2 * 30 * 86400
is_killed: bool
@public
def __init__(_coins: address[N_COINS], _underlying_coins: address[N_COINS],
_pool_token: address,
_A: uint256, _fee: uint256):
"""
_coins: Addresses of ERC20 conracts of coins (c-tokens) involved
_underlying_coins: Addresses of plain coins (ERC20)
_pool_token: Address of the token representing LP share
_A: Amplification coefficient multiplied by n * (n - 1)
_fee: Fee to charge for exchanges
"""
for i in range(N_COINS):
assert _coins[i] != ZERO_ADDRESS
assert _underlying_coins[i] != ZERO_ADDRESS
self.balances[i] = 0
self.coins = _coins
self.underlying_coins = _underlying_coins
self.A = _A
self.fee = _fee
self.admin_fee = 0
self.owner = msg.sender
self.kill_deadline = block.timestamp + kill_deadline_dt
self.is_killed = False
self.token = ERC20m(_pool_token)
@private
@constant
def _stored_rates() -> uint256[N_COINS]:
# exchangeRateStored * (1 + supplyRatePerBlock * (getBlockNumber - accrualBlockNumber) / 1e18)
result: uint256[N_COINS] = PRECISION_MUL
use_lending: bool[N_COINS] = USE_LENDING
for i in range(N_COINS):
rate: uint256 = LENDING_PRECISION # Used with no lending
if use_lending[i]:
rate = cERC20(self.coins[i]).exchangeRateStored()
supply_rate: uint256 = cERC20(self.coins[i]).supplyRatePerBlock()
old_block: uint256 = cERC20(self.coins[i]).accrualBlockNumber()
rate += rate * supply_rate * (block.number - old_block) / LENDING_PRECISION
result[i] *= rate
return result
@private
def _current_rates() -> uint256[N_COINS]:
result: uint256[N_COINS] = PRECISION_MUL
use_lending: bool[N_COINS] = USE_LENDING
for i in range(N_COINS):
rate: uint256 = LENDING_PRECISION # Used with no lending
if use_lending[i]:
rate = cERC20(self.coins[i]).exchangeRateCurrent()
result[i] *= rate
return result
@private
@constant
def _xp(rates: uint256[N_COINS]) -> uint256[N_COINS]:
result: uint256[N_COINS] = rates
for i in range(N_COINS):
result[i] = result[i] * self.balances[i] / PRECISION
return result
@private
@constant
def _xp_mem(rates: uint256[N_COINS], _balances: uint256[N_COINS]) -> uint256[N_COINS]:
result: uint256[N_COINS] = rates
for i in range(N_COINS):
result[i] = result[i] * _balances[i] / PRECISION
return result
@private
@constant
def get_D(xp: uint256[N_COINS]) -> uint256:
S: uint256 = 0
for _x in xp:
S += _x
if S == 0:
return 0
Dprev: uint256 = 0
D: uint256 = S
Ann: uint256 = self.A * N_COINS
for _i in range(255):
D_P: uint256 = D
for _x in xp:
D_P = D_P * D / (_x * N_COINS + 1) # +1 is to prevent /0
Dprev = D
D = (Ann * S + D_P * N_COINS) * D / ((Ann - 1) * D + (N_COINS + 1) * D_P)
# Equality with the precision of 1
if D > Dprev:
if D - Dprev <= 1:
break
else:
if Dprev - D <= 1:
break
return D
@private
@constant
def get_D_mem(rates: uint256[N_COINS], _balances: uint256[N_COINS]) -> uint256:
return self.get_D(self._xp_mem(rates, _balances))
@public
@constant
def get_virtual_price() -> uint256:
"""
Returns portfolio virtual price (for calculating profit)
scaled up by 1e18
"""
D: uint256 = self.get_D(self._xp(self._stored_rates()))
# D is in the units similar to DAI (e.g. converted to precision 1e18)
# When balanced, D = n * x_u - total virtual value of the portfolio
token_supply: uint256 = self.token.totalSupply()
return D * PRECISION / token_supply
@public
@constant
def calc_token_amount(amounts: uint256[N_COINS], deposit: bool) -> uint256:
"""
Simplified method to calculate addition or reduction in token supply at
deposit or withdrawal without taking fees into account (but looking at
slippage).
Needed to prevent front-running, not for precise calculations!
"""
_balances: uint256[N_COINS] = self.balances
rates: uint256[N_COINS] = self._stored_rates()
D0: uint256 = self.get_D_mem(rates, _balances)
for i in range(N_COINS):
if deposit:
_balances[i] += amounts[i]
else:
_balances[i] -= amounts[i]
D1: uint256 = self.get_D_mem(rates, _balances)
token_amount: uint256 = self.token.totalSupply()
diff: uint256 = 0
if deposit:
diff = D1 - D0
else:
diff = D0 - D1
return diff * token_amount / D0
@public
@nonreentrant('lock')
def add_liquidity(amounts: uint256[N_COINS], min_mint_amount: uint256):
# Amounts is amounts of c-tokens
assert not self.is_killed
tethered: bool[N_COINS] = TETHERED
use_lending: bool[N_COINS] = USE_LENDING
fees: uint256[N_COINS] = ZEROS
_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
_admin_fee: uint256 = self.admin_fee
token_supply: uint256 = self.token.totalSupply()
rates: uint256[N_COINS] = self._current_rates()
# Initial invariant
D0: uint256 = 0
old_balances: uint256[N_COINS] = self.balances
if token_supply > 0:
D0 = self.get_D_mem(rates, old_balances)
new_balances: uint256[N_COINS] = old_balances
for i in range(N_COINS):
if token_supply == 0:
assert amounts[i] > 0
# balances store amounts of c-tokens
new_balances[i] = old_balances[i] + amounts[i]
# Invariant after change
D1: uint256 = self.get_D_mem(rates, new_balances)
assert D1 > D0
# We need to recalculate the invariant accounting for fees
# to calculate fair user's share
D2: uint256 = D1
if token_supply > 0:
# Only account for fees if we are not the first to deposit
for i in range(N_COINS):
ideal_balance: uint256 = D1 * old_balances[i] / D0
difference: uint256 = 0
if ideal_balance > new_balances[i]:
difference = ideal_balance - new_balances[i]
else:
difference = new_balances[i] - ideal_balance
fees[i] = _fee * difference / FEE_DENOMINATOR
self.balances[i] = new_balances[i] - (fees[i] * _admin_fee / FEE_DENOMINATOR)
new_balances[i] -= fees[i]
D2 = self.get_D_mem(rates, new_balances)
else:
self.balances = new_balances
# Calculate, how much pool tokens to mint
mint_amount: uint256 = 0
if token_supply == 0:
mint_amount = D1 # Take the dust if there was any
else:
mint_amount = token_supply * (D2 - D0) / D0
assert mint_amount >= min_mint_amount, "Slippage screwed you"
# Take coins from the sender
for i in range(N_COINS):
if tethered[i] and not use_lending[i]:
USDT(self.coins[i]).transferFrom(msg.sender, self, amounts[i])
else:
assert_modifiable(
cERC20(self.coins[i]).transferFrom(msg.sender, self, amounts[i]))
# Mint pool tokens
self.token.mint(msg.sender, mint_amount)
log.AddLiquidity(msg.sender, amounts, fees, D1, token_supply + mint_amount)
@private
@constant
def get_y(i: int128, j: int128, x: uint256, _xp: uint256[N_COINS]) -> uint256:
# x in the input is converted to the same price/precision
assert (i != j) and (i >= 0) and (j >= 0) and (i < N_COINS) and (j < N_COINS)
D: uint256 = self.get_D(_xp)
c: uint256 = D
S_: uint256 = 0
Ann: uint256 = self.A * N_COINS
_x: uint256 = 0
for _i in range(N_COINS):
if _i == i:
_x = x
elif _i != j:
_x = _xp[_i]
else:
continue
S_ += _x
c = c * D / (_x * N_COINS)
c = c * D / (Ann * N_COINS)
b: uint256 = S_ + D / Ann # - D
y_prev: uint256 = 0
y: uint256 = D
for _i in range(255):
y_prev = y
y = (y*y + c) / (2 * y + b - D)
# Equality with the precision of 1
if y > y_prev:
if y - y_prev <= 1:
break
else:
if y_prev - y <= 1:
break
return y
@public
@constant
def get_dy(i: int128, j: int128, dx: uint256) -> uint256:
# dx and dy in c-units
rates: uint256[N_COINS] = self._stored_rates()
xp: uint256[N_COINS] = self._xp(rates)
x: uint256 = xp[i] + (dx * rates[i] / PRECISION)
y: uint256 = self.get_y(i, j, x, xp)
dy: uint256 = (xp[j] - y) * PRECISION / rates[j]
_fee: uint256 = self.fee * dy / FEE_DENOMINATOR
return dy - _fee
@public
@constant
def get_dx(i: int128, j: int128, dy: uint256) -> uint256:
# dx and dy in c-units
rates: uint256[N_COINS] = self._stored_rates()
xp: uint256[N_COINS] = self._xp(rates)
y: uint256 = xp[j] - (dy * FEE_DENOMINATOR / (FEE_DENOMINATOR - self.fee)) * rates[j] / PRECISION
x: uint256 = self.get_y(j, i, y, xp)
dx: uint256 = (x - xp[i]) * PRECISION / rates[i]
return dx
@public
@constant
def get_dy_underlying(i: int128, j: int128, dx: uint256) -> uint256:
# dx and dy in underlying units
rates: uint256[N_COINS] = self._stored_rates()
xp: uint256[N_COINS] = self._xp(rates)
precisions: uint256[N_COINS] = PRECISION_MUL
x: uint256 = xp[i] + dx * precisions[i]
y: uint256 = self.get_y(i, j, x, xp)
dy: uint256 = (xp[j] - y) / precisions[j]
_fee: uint256 = self.fee * dy / FEE_DENOMINATOR
return dy - _fee
@public
@constant
def get_dx_underlying(i: int128, j: int128, dy: uint256) -> uint256:
# dx and dy in underlying units
rates: uint256[N_COINS] = self._stored_rates()
xp: uint256[N_COINS] = self._xp(rates)
precisions: uint256[N_COINS] = PRECISION_MUL
y: uint256 = xp[j] - (dy * FEE_DENOMINATOR / (FEE_DENOMINATOR - self.fee)) * precisions[j]
x: uint256 = self.get_y(j, i, y, xp)
dx: uint256 = (x - xp[i]) / precisions[i]
return dx
@private
def _exchange(i: int128, j: int128, dx: uint256, rates: uint256[N_COINS]) -> uint256:
assert not self.is_killed
# dx and dy are in c-tokens
xp: uint256[N_COINS] = self._xp(rates)
x: uint256 = xp[i] + dx * rates[i] / PRECISION
y: uint256 = self.get_y(i, j, x, xp)
dy: uint256 = xp[j] - y
dy_fee: uint256 = dy * self.fee / FEE_DENOMINATOR
dy_admin_fee: uint256 = dy_fee * self.admin_fee / FEE_DENOMINATOR
self.balances[i] = x * PRECISION / rates[i]
self.balances[j] = (y + (dy_fee - dy_admin_fee)) * PRECISION / rates[j]
_dy: uint256 = (dy - dy_fee) * PRECISION / rates[j]
return _dy
@public
@nonreentrant('lock')
def exchange(i: int128, j: int128, dx: uint256, min_dy: uint256):
rates: uint256[N_COINS] = self._current_rates()
dy: uint256 = self._exchange(i, j, dx, rates)
assert dy >= min_dy, "Exchange resulted in fewer coins than expected"
tethered: bool[N_COINS] = TETHERED
use_lending: bool[N_COINS] = USE_LENDING
if tethered[i] and not use_lending[i]:
USDT(self.coins[i]).transferFrom(msg.sender, self, dx)
else:
assert_modifiable(cERC20(self.coins[i]).transferFrom(msg.sender, self, dx))
if tethered[j] and not use_lending[j]:
USDT(self.coins[j]).transfer(msg.sender, dy)
else:
assert_modifiable(cERC20(self.coins[j]).transfer(msg.sender, dy))
log.TokenExchange(msg.sender, i, dx, j, dy)
@public
@nonreentrant('lock')
def exchange_underlying(i: int128, j: int128, dx: uint256, min_dy: uint256):
rates: uint256[N_COINS] = self._current_rates()
precisions: uint256[N_COINS] = PRECISION_MUL
rate_i: uint256 = rates[i] / precisions[i]
rate_j: uint256 = rates[j] / precisions[j]
dx_: uint256 = dx * PRECISION / rate_i
dy_: uint256 = self._exchange(i, j, dx_, rates)
dy: uint256 = dy_ * rate_j / PRECISION
assert dy >= min_dy, "Exchange resulted in fewer coins than expected"
use_lending: bool[N_COINS] = USE_LENDING
tethered: bool[N_COINS] = TETHERED
ok: uint256 = 0
if tethered[i]:
USDT(self.underlying_coins[i]).transferFrom(msg.sender, self, dx)
else:
assert_modifiable(ERC20(self.underlying_coins[i])\
.transferFrom(msg.sender, self, dx))
if use_lending[i]:
ERC20(self.underlying_coins[i]).approve(self.coins[i], dx)
ok = cERC20(self.coins[i]).mint(dx)
if ok > 0:
raise "Could not mint coin"
if use_lending[j]:
ok = cERC20(self.coins[j]).redeem(dy_)
if ok > 0:
raise "Could not redeem coin"
if tethered[j]:
USDT(self.underlying_coins[j]).transfer(msg.sender, dy)
else:
assert_modifiable(ERC20(self.underlying_coins[j])\
.transfer(msg.sender, dy))
log.TokenExchangeUnderlying(msg.sender, i, dx, j, dy)
@public
@nonreentrant('lock')
def remove_liquidity(_amount: uint256, min_amounts: uint256[N_COINS]):
total_supply: uint256 = self.token.totalSupply()
amounts: uint256[N_COINS] = ZEROS
fees: uint256[N_COINS] = ZEROS
tethered: bool[N_COINS] = TETHERED
use_lending: bool[N_COINS] = USE_LENDING
for i in range(N_COINS):
value: uint256 = self.balances[i] * _amount / total_supply
assert value >= min_amounts[i], "Withdrawal resulted in fewer coins than expected"
self.balances[i] -= value
amounts[i] = value
if tethered[i] and not use_lending[i]:
USDT(self.coins[i]).transfer(msg.sender, value)
else:
assert_modifiable(cERC20(self.coins[i]).transfer(
msg.sender, value))
self.token.burnFrom(msg.sender, _amount) # Will raise if not enough
log.RemoveLiquidity(msg.sender, amounts, fees, total_supply - _amount)
@public
@nonreentrant('lock')
def remove_liquidity_imbalance(amounts: uint256[N_COINS], max_burn_amount: uint256):
assert not self.is_killed
tethered: bool[N_COINS] = TETHERED
use_lending: bool[N_COINS] = USE_LENDING
token_supply: uint256 = self.token.totalSupply()
assert token_supply > 0
_fee: uint256 = self.fee * N_COINS / (4 * (N_COINS - 1))
_admin_fee: uint256 = self.admin_fee
rates: uint256[N_COINS] = self._current_rates()
old_balances: uint256[N_COINS] = self.balances
new_balances: uint256[N_COINS] = old_balances
D0: uint256 = self.get_D_mem(rates, old_balances)
for i in range(N_COINS):
new_balances[i] -= amounts[i]
D1: uint256 = self.get_D_mem(rates, new_balances)
fees: uint256[N_COINS] = ZEROS
for i in range(N_COINS):
ideal_balance: uint256 = D1 * old_balances[i] / D0
difference: uint256 = 0
if ideal_balance > new_balances[i]:
difference = ideal_balance - new_balances[i]
else:
difference = new_balances[i] - ideal_balance
fees[i] = _fee * difference / FEE_DENOMINATOR
self.balances[i] = new_balances[i] - (fees[i] * _admin_fee / FEE_DENOMINATOR)
new_balances[i] -= fees[i]
D2: uint256 = self.get_D_mem(rates, new_balances)
token_amount: uint256 = (D0 - D2) * token_supply / D0
assert token_amount > 0
assert token_amount <= max_burn_amount, "Slippage screwed you"
for i in range(N_COINS):
if tethered[i] and not use_lending[i]:
USDT(self.coins[i]).transfer(msg.sender, amounts[i])
else:
assert_modifiable(cERC20(self.coins[i]).transfer(msg.sender, amounts[i]))
self.token.burnFrom(msg.sender, token_amount) # Will raise if not enough
log.RemoveLiquidityImbalance(msg.sender, amounts, fees, D1, token_supply - token_amount)
### Admin functions ###
@public
def commit_new_parameters(amplification: uint256,
new_fee: uint256,
new_admin_fee: uint256):
assert msg.sender == self.owner
assert self.admin_actions_deadline == 0
assert new_admin_fee <= max_admin_fee
assert new_fee <= max_fee
assert amplification <= max_A
_deadline: timestamp = block.timestamp + admin_actions_delay
self.admin_actions_deadline = _deadline
self.future_A = amplification
self.future_fee = new_fee
self.future_admin_fee = new_admin_fee
log.CommitNewParameters(_deadline, amplification, new_fee, new_admin_fee)
@public
def apply_new_parameters():
assert msg.sender == self.owner
assert self.admin_actions_deadline <= block.timestamp\
and self.admin_actions_deadline > 0
self.admin_actions_deadline = 0
_A: uint256 = self.future_A
_fee: uint256 = self.future_fee
_admin_fee: uint256 = self.future_admin_fee
self.A = _A
self.fee = _fee
self.admin_fee = _admin_fee
log.NewParameters(_A, _fee, _admin_fee)
@public
def revert_new_parameters():
assert msg.sender == self.owner
self.admin_actions_deadline = 0
@public
def commit_transfer_ownership(_owner: address):
assert msg.sender == self.owner
assert self.transfer_ownership_deadline == 0
_deadline: timestamp = block.timestamp + admin_actions_delay
self.transfer_ownership_deadline = _deadline
self.future_owner = _owner
log.CommitNewAdmin(_deadline, _owner)
@public
def apply_transfer_ownership():
assert msg.sender == self.owner
assert block.timestamp >= self.transfer_ownership_deadline\
and self.transfer_ownership_deadline > 0
self.transfer_ownership_deadline = 0
_owner: address = self.future_owner
self.owner = _owner
log.NewAdmin(_owner)
@public
def revert_transfer_ownership():
assert msg.sender == self.owner
self.transfer_ownership_deadline = 0
@public
def withdraw_admin_fees():
assert msg.sender == self.owner
_precisions: uint256[N_COINS] = PRECISION_MUL
tethered: bool[N_COINS] = TETHERED
use_lending: bool[N_COINS] = USE_LENDING
for i in range(N_COINS):
c: address = self.coins[i]
value: uint256 = cERC20(c).balanceOf(self) - self.balances[i]
if value > 0:
if tethered[i] and not use_lending[i]:
USDT(c).transfer(msg.sender, value)
else:
assert_modifiable(cERC20(c).transfer(msg.sender, value))
@public
def kill_me():
assert msg.sender == self.owner
assert self.kill_deadline > block.timestamp
self.is_killed = True
@public
def unkill_me():
assert msg.sender == self.owner
self.is_killed = False