-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathaudio_input.rs
665 lines (570 loc) · 20.5 KB
/
audio_input.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
use super::{
audio::AudioError,
echo_cancel::EncoderProcess,
net::bytes_pool::{self, BytesPool},
peer::channel::{PeerChannelCommand, PoolBytesVec},
processor::AudioEchoProcessor,
resampler::{Resampler, ResamplerConfig},
};
use crate::rtc::{
audio::{cpal_err_fn, get_input_device, get_opus_samples_count},
peer2::MediaExtra,
player::host_time_to_stream_instant,
resampler,
};
use audio_thread_priority::{
demote_current_thread_from_real_time, promote_current_thread_to_real_time,
};
use bytes::BytesMut;
use cpal::traits::{DeviceTrait, StreamTrait};
use flume::{Receiver, Sender};
use ringbuf::{HeapConsumer, HeapProducer, HeapRb, Rb};
use std::{
sync::atomic::{AtomicU64, Ordering},
sync::Arc,
time::Duration,
};
use str0m::media::{Frequency, MediaKind, MediaTime};
pub enum AudioInputCommand {
Toggle(bool),
ChangeDevice(String),
// internal
GotNewAudio,
Stop,
}
pub struct AudioInputOptions {
pub preferred_mic: Option<String>,
pub enabled: bool,
pub echo_processor: AudioEchoProcessor,
pub engine_sender: Sender<PeerChannelCommand>,
}
pub struct AudioInput {
commands_sender: Sender<AudioInputCommand>,
event_loop: Option<AudioInputEventLoop>,
}
impl AudioInput {
pub fn new(options: AudioInputOptions) -> Self {
let (commands_sender, commands_reciever) = flume::bounded::<AudioInputCommand>(500);
let event_loop = AudioInputEventLoop::new(options, commands_sender.clone(), commands_reciever);
Self {
commands_sender,
event_loop: Some(event_loop),
}
}
pub fn get_event_loop(&mut self) -> AudioInputEventLoop {
self.event_loop.take().expect("to have input event loop")
}
pub fn toggle(&self, enabled: bool) {
let _ = self
.commands_sender
.try_send(AudioInputCommand::Toggle(enabled));
}
pub fn change_device(&self, device: String) {
let _ = self
.commands_sender
.try_send(AudioInputCommand::ChangeDevice(device));
}
pub fn stop(&self) {
let _ = self.commands_sender.try_send(AudioInputCommand::Stop);
}
}
impl Drop for AudioInput {
fn drop(&mut self) {
debug!("audio input dropped");
self.stop();
}
}
pub struct AudioInputEventLoop {
device_sample_rate: u32,
device_channels: u16,
/// 20ms of audio at device config (NOT guranteed to be 48khz)
device_frame_size: usize,
frame_size_ms: usize,
/// 20ms of audio at 48khz
encoder_frame_size: usize,
sample_rate: u32,
channels: u16,
/// this is set initially and updated on change so it's always latest value
preferred_mic: Option<String>,
enabled: bool,
commands_reciever: Receiver<AudioInputCommand>,
commands_sender: Sender<AudioInputCommand>,
engine_sender: Sender<PeerChannelCommand>,
encoder_processor: EncoderProcess,
processor_buffer: Vec<f32>,
/// Used for single channel pop and then added to main buffer to avoid single poping from ring buffer
resampler_pre_buffer: Vec<f32>,
resampler_buffer: Vec<f32>,
encoder_buffer: Vec<f32>,
muted_vec: Vec<f32>,
resampler: Option<Resampler>,
bytes_output: Vec<u8>,
encoder: opus::Encoder,
device_stop_sender: Option<Sender<()>>,
audio_ring_buff_producer: HeapProducer<f32>,
audio_ring_buff_consumer: HeapConsumer<f32>,
consumer: Option<HeapConsumer<f32>>,
rtp_time: MediaTime,
pool: BytesPool,
max_bytes_output_len: usize,
capture_delay_ms: Arc<AtomicU64>,
}
/// Audio input device stack
/// Capture device, encoder, resampler, and processor
///
/// ## First attempt
/// Moved to a thread
/// Have a (ring?)buffer, put audio through the whole stack and add to buffer
/// then have a "get_samples" that pops 10ms of audio out of our buffer
/// then call that from the engine event loop
impl AudioInputEventLoop {
pub fn new(
AudioInputOptions {
echo_processor,
enabled,
preferred_mic,
engine_sender,
}: AudioInputOptions,
commands_sender: Sender<AudioInputCommand>,
commands_reciever: Receiver<AudioInputCommand>,
) -> Self {
let channels = 2;
let frame_size_ms = 20;
let max_frame_size = get_opus_samples_count(48_000, channels, 60); // 60ms of 48khz streo (just for simplicity)
let encoder_frame_size = get_opus_samples_count(
48_000,
channels,
frame_size_ms
.try_into()
.expect("failed to convert frame size"),
);
let muted_vec = vec![0.0_f32; max_frame_size];
let max_bytes_output_len = max_frame_size * 6;
// encoder output
let bytes_output: Vec<u8> = vec![0; max_bytes_output_len];
// Must operate at 48khz streo to match our speaker part
let encoder_processor = EncoderProcess::new(echo_processor, 2, 48_000);
let processor_buffer = encoder_processor.preallocate_buffer();
let encoder_buffer = vec![0.0_f32; encoder_frame_size]; // final audio buffer that feeds encoder
let resampler_buffer = vec![0.0_f32; max_frame_size];
let resampler_pre_buffer = vec![0.0_f32; max_frame_size / 2]; // one channel
// let encoder = Arc::new(Mutex::new(Self::create_encoder()));
let (audio_ring_buff_producer, audio_ring_buff_consumer) =
HeapRb::<f32>::new(max_frame_size).split();
let encoder = Self::create_encoder();
// callibrate
if !enabled {
encoder_processor.set_output_will_be_muted(true);
}
let rtp_time = MediaTime::ZERO;
// Create a pool for encoder output (new)
let pool = bytes_pool::BytesPool::new(200, max_bytes_output_len);
Self {
device_sample_rate: 0,
device_channels: 0,
device_frame_size: 0,
frame_size_ms,
rtp_time,
encoder_frame_size,
sample_rate: 48_000,
channels,
preferred_mic,
enabled,
commands_reciever,
commands_sender,
engine_sender,
encoder_processor,
processor_buffer,
resampler_pre_buffer,
resampler_buffer,
encoder_buffer,
audio_ring_buff_producer,
audio_ring_buff_consumer,
muted_vec,
resampler: None,
encoder,
bytes_output,
device_stop_sender: None,
consumer: None,
pool,
max_bytes_output_len,
capture_delay_ms: Arc::new(AtomicU64::new(0)),
}
}
fn get_bytes_mut(&mut self) -> BytesMut {
self.pool.get_bytes_mut()
}
pub async fn run(&mut self) -> Result<(), anyhow::Error> {
let (stop_sender, stop_reciever) = flume::bounded::<()>(1);
// ... on a thread that will compute audio and has to be real-time: buffer_size 0 will auto select from sample rate
let prio_handle = match promote_current_thread_to_real_time(0, 48_000) {
Ok(h) => Some(h),
Err(e) => {
eprintln!("Error promoting player thread to real-time: {}", e);
None
}
};
// Spawn input device thread
let Ok(mut stream) = self.start_device().await else {
return Err(anyhow::anyhow!("failed to start mic device"));
};
// let mut interval = tokio::time::interval(Duration::from_millis(self.frame_size_ms as u64)); // we operate in 20ms chunks
// interval.set_missed_tick_behavior(tokio::time::MissedTickBehavior::Skip);
loop {
tokio::select! {
_ = stop_reciever.recv_async() => {
info!("input: stop signal received");
break;
}
// _ = interval.tick() => {
// self.audio_tick().await;
// }
// Listen for command
Ok(command) = self.commands_reciever.recv_async() => {
match command {
AudioInputCommand::GotNewAudio => {
self.process_audio().await;
}
AudioInputCommand::Toggle(is_enabled) => {
self.enabled = is_enabled;
self.encoder_processor.set_output_will_be_muted(!is_enabled);
if is_enabled {
self.clear_buffer();
}
}
AudioInputCommand::ChangeDevice(device) => {
self.preferred_mic = Some(device);
let prev_stream = stream;
stream = self.start_device().await.expect("to start device");
drop(prev_stream);
}
AudioInputCommand::Stop => {
let _ = self.device_stop_sender
.take()
.expect("to have device stop sender")
.try_send(());
// .expect("to send device stop signal");
let _ = stop_sender.try_send(());
}
}
},
}
}
info!("input: stopped");
if let Some(handle) = prio_handle {
let _ = demote_current_thread_from_real_time(handle);
}
drop(stream);
Ok(())
}
fn clear_buffer(&mut self) {
let c = self.consumer.as_mut().expect("to have consumer");
c.skip(c.len());
info!("input: cleared buffer");
}
async fn start_device(&mut self) -> anyhow::Result<cpal::Stream> {
// let buffer_size = 240;
let _buffer_size = 240; // for final output after resampling to be close to 480;
let buffer_size = 480; // for better sync with echo cancel
// min or 512 or default if None
let (device, config, sample_rate, channels) =
find_input_device(self.preferred_mic.clone(), buffer_size as u32)?;
self.device_sample_rate = sample_rate;
self.device_channels = channels;
self.device_frame_size = self.get_device_frame_size();
// to reduce delay issue changed from 1.9
let _sample_multiplier = 2.1_f32;
let sample_multiplier = 4_f32; // increase because I increased changed buffer size
let ring_buffer_size =
(self.device_frame_size as f32 * sample_multiplier).ceil() as usize + buffer_size;
let (producer, consumer) = HeapRb::<f32>::new(ring_buffer_size).split();
let (device_stop_sender, _device_stop_reciever) = flume::bounded::<()>(1);
if let Some(prev_stop) = self.device_stop_sender.take() {
let _ = prev_stop.try_send(());
}
self.consumer = Some(consumer);
self.device_stop_sender = Some(device_stop_sender);
let commands_sender_clone = self.commands_sender.clone();
//.
// thread::spawn(move || {
// ... on a thread that will compute audio and has to be real-time:
// match promote_current_thread_to_real_time(buffer_size, sample_rate) {
// Ok(_h) => {
// println!("audio_input thread is now bumped to real-time priority.");
// }
// Err(e) => {
// eprintln!("Error promoting audio_input to real-time: {}", e);
// }
// }
let stream = start_audio_input(
device,
config,
producer,
commands_sender_clone,
self.encoder_processor.get_echo_processor().clone(),
self.capture_delay_ms.clone(),
)
.expect("to start input device");
// keep alive
// while device_stop_reciever.recv().is_ok() {
// sleep(std::time::Duration::from_millis(1));
// }
// });
// resample to 48khz stereo before processing by echo canceller
let resampler = Resampler::new(ResamplerConfig {
input_sample_rate: self.device_sample_rate,
output_sample_rate: 48_000,
channels: 2,
chunk: resampler::Chunk::FiveMs,
// chunk: resampler::Chunk::TenMs,
});
self.resampler = Some(resampler);
Ok(stream)
}
// Process 10ms of audio
async fn process_audio(&mut self) {
assert!(self.device_frame_size != 0, "input frame size is 0");
assert!(self.sample_rate != 0, "input sample_rate is 0");
assert!(self.channels != 0, "input channel is 0");
while let Some(samples_count) = self.get_audio() {
// expect 10ms
let expected_final_sample_count = self.encoder_frame_size / 2;
let input: &[f32];
// let Some(samples_count) = samples_count else {
// // not enough audio data
// return;
// };
trace!("process audio got audio samples {}", samples_count);
// resample
let resampler = self.resampler.as_mut().expect("to have resampler");
// debug!("to resample samples_count= {}", &samples_count);
let resampled = resampler.process(&self.resampler_buffer[..samples_count]);
// debug!("resampled samples_count= {}", &resampled.len());
// put it for processor
self.processor_buffer[0..resampled.len()].copy_from_slice(resampled);
// Fix output size to avoid resampler diff crash
if resampled.len() < expected_final_sample_count {
let diff = expected_final_sample_count - resampled.len();
let end = resampled.len() + diff;
self.processor_buffer[resampled.len()..end].copy_from_slice(&self.muted_vec[..diff]);
}
let len = expected_final_sample_count;
// feed the processor the mic output regardless of being muted to fix echo cancel bug on mic toggle
// process
// let size = self
// .encoder_processor
// .process(&mut self.processor_buffer[0..len])
// .expect("failed to process");
let input_mut = &mut self.processor_buffer[0..len];
let total_samples = input_mut.len();
let size = total_samples;
// we have to cut it in splits
let frame_size = self.encoder_processor.frame_size();
let frames = input_mut.chunks_exact_mut(frame_size);
let _single_samples: usize = 0;
// Delay
let capture_delay_ms = self.capture_delay_ms.load(Ordering::Relaxed);
for (_i, frame) in frames.enumerate() {
// set estimate for frame delay ms (based on next frame expectations)
// get delay here because it is different for each frame
// DO NOT ADD OFFSET AS we give both frames to render at the same time
// let less_delay_us = per_frame_delay_us * i as u64;
trace!("processing capture frame");
// process
self
.encoder_processor
.get_echo_processor_mut()
.process_capture_frame(frame, capture_delay_ms) // - less_delay_us
.expect("to process capture frame");
}
// assign as "input" for next step
input = &mut self.processor_buffer[..size];
if input.is_empty() {
return;
}
// // maybe we can avoid this copy by using the processor_buffer
// let dest = self.audio_buffer.extend_from_slice(other)
self.audio_ring_buff_producer.push_slice(input);
}
// see if we can tick in encoder (when we have 20ms of data)
self.audio_tick().await;
}
/// Pop 20ms of audio from the audio buffer, encode and send it
async fn audio_tick(&mut self) {
// check if we have enough data for a 20ms frame
if self.audio_ring_buff_consumer.len() < self.encoder_frame_size {
// not enough data yet
return;
}
let mut data_bytes = { self.get_bytes_mut() };
let audio_frame = &mut self.encoder_buffer[..self.encoder_frame_size];
// clear?
self.audio_ring_buff_consumer.pop_slice(audio_frame);
let _len = self.encoder_frame_size;
let is_mic_enabled = self.enabled;
let stats = self.encoder_processor.stats();
let input: &[f32];
if is_mic_enabled {
// assign as "input" for next step
input = audio_frame
} else {
input = &mut self.muted_vec[..self.encoder_frame_size];
}
if input.is_empty() {
warn!("input is empty");
return;
}
// From here we have 10ms of audio at 48khz stereo
let sample_count = input.len() as u64;
let duration_ms =
Duration::from_millis((sample_count / self.channels as u64) * 1000 / self.sample_rate as u64);
let duration = MediaTime::new(
sample_count / self.channels as u64,
Frequency::FORTY_EIGHT_KHZ,
);
assert!(
self.frame_size_ms as u128 == duration_ms.as_millis(),
"frame size and duration not match expected: {} actual: {}",
self.frame_size_ms,
duration_ms.as_millis()
);
let len = self
.encoder
.encode_float(input, data_bytes.as_mut())
.expect("to encode");
data_bytes.resize(len, 0);
// skip 1-2 bytes or less for DTX
if len < 3 {
return;
}
// get current time (starts at zero so we use last one)
let current_rtp_time = self.rtp_time;
// update rtp time for next packet
self.rtp_time = current_rtp_time + duration;
// Send to all active tracks
self.send(
data_bytes.freeze(),
current_rtp_time,
MediaExtra::Audio {
voice_activity: stats.has_voice.unwrap_or(true),
},
);
}
/// Send to all local tracks
fn send(&self, data: PoolBytesVec, rtp_time: MediaTime, extra: MediaExtra) {
let _ = self.engine_sender.try_send(PeerChannelCommand::SendMedia {
kind: MediaKind::Audio,
data,
rtp_time,
extra: Some(extra),
});
}
fn current_buffer_delay_us(&self) -> u64 {
let buf_len = self.consumer.as_ref().expect("to have consumer").len();
// this is wrong as we make it always 2 before pop
let channels = self.device_channels;
((1e6 * buf_len as f64 / self.device_sample_rate as f64 / channels as f64) + 0.5) as u64
}
// get 10ms of raw audio from HAL ring buffer
fn get_audio<'a>(&'a mut self) -> Option<usize> {
let device_10ms_frame_size = self.device_frame_size / 2;
let consumer = self.consumer.as_mut().expect("to have consumer");
if consumer.len() < device_10ms_frame_size {
return None;
}
let samples_count;
// ensure streo
if self.device_channels == 1 {
// frame size is for a single channel because of device_channels = 1;
samples_count = device_10ms_frame_size * 2;
let mut i = 0;
// Pop once into a pre buffer to avoid single pop as adviced against by ring buffer crate
consumer.pop_slice(&mut self.resampler_pre_buffer[0..device_10ms_frame_size]);
while i < samples_count {
let sample = self.resampler_pre_buffer[i / 2];
self.resampler_buffer[i] = sample;
self.resampler_buffer[i + 1] = sample;
i += 2;
}
} else {
samples_count = device_10ms_frame_size;
consumer.pop_slice(&mut self.resampler_buffer[0..samples_count]);
}
Some(samples_count)
}
fn get_device_frame_size(&self) -> usize {
get_opus_samples_count(
self.device_sample_rate,
self.device_channels,
self.frame_size_ms as u32,
)
}
fn create_encoder() -> opus::Encoder {
let mut encoder = opus::Encoder::new(48_000, opus::Channels::Stereo, opus::Application::Audio)
.expect("to create encoder");
encoder.set_inband_fec(true).expect("to set fec");
encoder.set_packet_loss_perc(20).expect("to set loss perc");
encoder.set_complexity(9).expect("to set complexity");
// it's advised to use at least 32-64kbps for streo voice
// encoder
// .set_bitrate(opus::Bitrate::Bits(80_000))
// .expect("to set bitrate");
encoder
}
}
fn find_input_device(
preferred_mic: Option<String>,
buffer_size: u32,
) -> Result<(cpal::Device, cpal::StreamConfig, u32, u16), AudioError> {
let preferred_mic_clone = preferred_mic.clone();
let (device, config) = get_input_device(48_000, preferred_mic, buffer_size)?;
let channels = config.channels;
let sample_rate = config.sample_rate;
info!(
"picked input device: {} config: {:?} preferred: {:?}",
device.name().expect("to have device name"),
config,
&preferred_mic_clone
);
Ok((device, config, sample_rate.0, channels))
}
fn start_audio_input(
device: cpal::Device,
config: cpal::StreamConfig,
mut producer: HeapProducer<f32>,
command_sender: Sender<AudioInputCommand>,
_processor: AudioEchoProcessor,
capture_delay_ms: Arc<AtomicU64>,
) -> anyhow::Result<cpal::Stream, anyhow::Error> {
let sample_rate = config.sample_rate.0;
let channels = config.channels;
// 10ms
// assume cpal::SampleFormat::F32
let stream = device.build_input_stream(
&config,
move |data: &[f32], info| {
// Delay
let capture_time_ns = info.timestamp().callback.as_nanos();
let now_host_time = cap::cidre::cv::current_host_time();
let now_time_ns = host_time_to_stream_instant(now_host_time).as_nanos();
let device_latency_us = 1e-3 * (now_time_ns - capture_time_ns) as f64;
let buffer_latency_us =
1.0e6 * producer.len() as f64 / sample_rate as f64 / channels as f64 + 0.5;
let capture_total_delay = 1e-3 * (buffer_latency_us + device_latency_us as f64) + 0.5;
capture_delay_ms.store(capture_total_delay as u64, Ordering::Relaxed);
// Write
if producer.free_len() >= data.len() {
producer.push_slice(data);
} else {
error!("producer.push_slice failed, clearing buffer...");
// do not clear here, it causes fix audio glitch
}
let _ = command_sender.try_send(AudioInputCommand::GotNewAudio);
},
cpal_err_fn,
)?;
stream.play()?;
info!("input: started getting device samples...");
// no need to keep it running, it's already in a loop
Ok(stream)
}