-
Notifications
You must be signed in to change notification settings - Fork 23
/
App.js
265 lines (254 loc) · 7.62 KB
/
App.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import React, {Fragment} from 'react';
import {
SafeAreaView,
StyleSheet,
View,
Text,
StatusBar,
Image,
Button,
TouchableOpacity,
Linking,
ScrollView
} from 'react-native';
import * as tf from '@tensorflow/tfjs';
import { fetch } from '@tensorflow/tfjs-react-native';
import * as jpeg from 'jpeg-js';
import * as nsfwjs from 'nsfwjs';
import ImagePicker from 'react-native-image-picker';
import { BlurView } from "@react-native-community/blur";
import { bundleResourceIO } from "@tensorflow/tfjs-react-native";
export default class App extends React.Component {
state = {
tfReady: false,
modelReady: false,
predictions: null,
image: null
};
async componentDidMount() {
// Wait for tf to be ready.
await tf.ready();
// Signal to the app that tensorflow.js can now be used.
this.setState({tfReady: true});
this.model = await nsfwjs.load(bundleResourceIO(require("./nsfw-model.json"), require("./nsfw-weights.bin")));
this.setState({modelReady: true});
}
imageToTensor(rawImageData: ArrayBuffer): tf.Tensor3D {
const TO_UINT8ARRAY = true;
const { width, height, data } = jpeg.decode(rawImageData, TO_UINT8ARRAY);
// Drop the alpha channel info for mobilenet
const buffer = new Uint8Array(width * height * 3);
let offset = 0; // offset into original data
for (let i = 0; i < buffer.length; i += 3) {
buffer[i] = data[offset];
buffer[i + 1] = data[offset + 1];
buffer[i + 2] = data[offset + 2];
offset += 4;
}
return tf.tensor3d(buffer, [height, width, 3]);
}
classifyImage = async () => {
const imageAssetPath = Image.resolveAssetSource(this.state.image);
const response = await fetch(imageAssetPath.uri, {}, { isBinary: true });
const rawImageData = await response.arrayBuffer();
const imageTensor = this.imageToTensor(rawImageData);
const predictions = await this.model.classify(imageTensor);
this.setState({predictions});
}
selectImage = () => {
const options = {
title: 'Select Image',
storageOptions: {
skipBackup: true,
path: 'images',
},
};
ImagePicker.showImagePicker(options, (response) => {
console.log('Response = ', response);
if (response.didCancel) {
console.log('User cancelled image picker');
} else if (response.error) {
console.log('ImagePicker Error: ', response.error);
} else if (response.customButton) {
console.log('User tapped custom button: ', response.customButton);
} else {
const source = { uri: response.uri };
this.setState({
image: source,
predictions: null
});
this.classifyImage()
}
});
}
renderPrediction = (prediction) => {
return (
<Text key={prediction.className} style={styles.text}>{prediction.className}: {Math.round(prediction.probability * 100)}%</Text>
)
}
render () {
const { tfReady, modelReady, predictions, image } = this.state
let shouldBlur = true;
if (predictions) {
switch(predictions[0].className) {
case 'Porn':
case 'Sexy':
case 'Hentai':
shouldBlur = true;
break;
default:
shouldBlur = false;
}
}
return (
<Fragment>
<StatusBar barStyle="light-content" />
<SafeAreaView backgroundColor="#000000">
<ScrollView style={styles.root} contentContainerStyle={styles.rootContent}>
<View style={styles.body}>
<Image source={require("./nsfwjs_logo.jpg")} style={styles.logo} />
<Text style={styles.text}>TFJS: {tfReady ? "Ready" : "Loading"}</Text>
{tfReady && <Text style={styles.text}>Model: {modelReady ? "Loaded" : "Loading"}</Text>}
<TouchableOpacity style={styles.imageWrapper} onPress={modelReady ? this.selectImage : undefined}>
{image && <Image source={image} style={styles.image} />}
{image && shouldBlur && <BlurView blurType="dark" blurAmount={30} style={styles.blur} />}
{modelReady && !image && <Text style={styles.transparentText}>Tap to choose image</Text>}
</TouchableOpacity>
<View style={styles.predictionWrapper}>
{modelReady && image && <Text style={styles.text}>Predictions: {predictions ? "" : "Predicting"}</Text>}
{modelReady && predictions && predictions.map((p) => this.renderPrediction(p))}
</View>
<View style={styles.footer}>
<View style={styles.logoWrapper}>
<TouchableOpacity onPress={() => Linking.open("https://js.tensorflow.org/")} style={styles.logoLink}>
<Text style={styles.poweredBy}>Powered by:</Text>
<Image source={require("./tfjs.jpg")} style={styles.tfLogo} />
</TouchableOpacity>
<TouchableOpacity onPress={() => Linking.open("https://infinite.red")} style={styles.logoLink}>
<Text style={styles.presentedBy}>Presented by:</Text>
<Image source={require("./ir-logo.png")} style={styles.irLogo} />
</TouchableOpacity>
</View>
<Text style={styles.resources}>Resources:</Text>
<View style={styles.links}>
<Text onPress={() => Linking.open("https://github.com/infinitered/nsfwjs-mobile/")} style={styles.text}>GitHub</Text>
<Text onPress={() => Linking.open("https://github.com/infinitered/nsfwjs")} style={styles.text}>NSFWJS GitHub</Text>
<Text onPress={() => Linking.open("https://shift.infinite.red/avoid-nightmares-nsfw-js-ab7b176978b1")} style={styles.text}>Blog Post</Text>
</View>
</View>
</View>
</ScrollView>
</SafeAreaView>
</Fragment>
);
}
};
const styles = StyleSheet.create({
root: {
width: "100%",
height: "100%"
},
rootContent: {
width: "100%",
height: "100%",
backgroundColor: '#000000',
marginBottom: 50
},
body: {
flex: 1,
backgroundColor: '#000000',
flexDirection: 'column',
alignItems: "center",
color: '#ffffff'
},
text: {
color: '#ffffff'
},
logo: {
width: 300,
height: 120
},
imageWrapper: {
width: 280,
height: 280,
padding: 10,
borderColor: '#02bbd7',
borderWidth: 5,
borderStyle: "dashed",
marginTop: 10,
marginBottom: 10,
position: 'relative',
justifyContent: "center",
alignItems: "center"
},
image: {
width: 250,
height: 250,
position: 'absolute',
top: 10,
left: 10,
bottom: 10,
right: 10,
},
blur: {
width: 250,
height: 250,
position: 'absolute',
top: 10,
left: 10,
bottom: 10,
right: 10
},
transparentText: {
color: "#ffffff",
opacity: 0.7
},
predictionWrapper: {
height: 100,
width: "100%",
flexDirection: "column",
alignItems: "center"
},
footer: {
flexDirection: "column",
alignItems: "center"
},
logoWrapper: {
flexDirection: "row",
justifyContent: "space-around"
},
logoLink: {
flexDirection: "column",
alignItems: "center",
flex: 1
},
poweredBy: {
fontSize: 20,
color: "#e69e34",
marginBottom: 6
},
tfLogo: {
width: 125,
height: 70,
},
presentedBy: {
fontSize: 20,
color: "#e72f36",
marginBottom: 8
},
irLogo: {
width: 150,
height: 64
},
resources: {
marginTop: 10,
color: "#ffffff"
},
links: {
width: "100%",
flexDirection: "row",
justifyContent: "space-evenly",
marginTop: 10,
marginBottom: 25
}
});