forked from rio2310/R-for-beginners
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCh5-book-Rfnp-code.R
421 lines (318 loc) · 10.6 KB
/
Ch5-book-Rfnp-code.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
####### Code for chapter 5 #######
# installing and loading
install.packages("lattice")
install.packages("ggplot2")
library(lattice)
library(ggplot2)
# plot pertamaku
x <- rnorm(100)
y <- rnorm(100)
plot(x, y, pch=21,
mar=c(4,4,2,2),
col='red',bg='black',
xlim=c(-3,3),
ylim=c(-3,3))
fit <- lm(y ~ x)
abline(fit, lwd = 3, col = "blue")
title('Plot pertamaku')
text(-2, -2, 'Label')
legend("topleft",
legend="Data",
pch=21,
pt.bg='black',
col='red')
# Multiple plot dalam satu halaman
plot.new() # untuk membuat plot baru
par(mfrow= c(2,2)) # mengatur jumlah baris dan kolom
par(mar = c(3, 3, 2, 2)) # mengatur margin antar plot
plot(x, y, pch = 20, main="plot 1")
plot(x, z, pch = 19, main="plot 2")
plot(y, z, pch = 1, main="plot 3")
plot(y, z, pch = 5, main="plot 4")
# Plot dua grup data dalam satu grafik
plot.new()
x <- rnorm(100)
y <- x + rnorm(100)
g <- gl(2, 50, labels = c("Kelas A", "Kelas B"))
str(g)
plot(x,y, type='n') # Draws no points
points(x[g == "Kelas A"], y[g == "Kelas A"],
col="blue",
pch=1)
points(x[g == "Kelas B"], y[g == "Kelas B"],
col="red",
pch=19)
legend("topleft", c("Kelas A", "Kelas B"),
col=c("blue", "red"),
pch=c(1,19))
# membuat histogram
## histogram sederhana untuk variabel "mpg"
hist(mtcars$mpg)
## histogram berwarna dengan pengaturan jumlah "Bins"
hist(mtcars$mpg, breaks=12, col="red")
## Menambahkan kurva distribusi normal
x <- mtcars$mpg
h<-hist(x,
breaks=10,
col="red",
xlab="mil per galon",
main="Histogram dengan garis kurva normal")
xfit <- seq(min(x),
max(x),
length=40)
yfit <- dnorm(xfit,
mean=mean(x),
sd=sd(x))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)
## Kernel Density Plot
d <- density(mtcars$mpg) # returns the density data
plot(d) # plots the results
## Density Plot berwarna
d <- density(mtcars$mpg)
plot(d,
main="Kernel Density mil per galon")
polygon(d,
col="red",
border="blue")
## dot plot sederhana
dotchart(mtcars$mpg,
labels=row.names(mtcars),
cex=.7,
main="Konsumsi BBM berbagai merk mobil", xlab="Miles Per Gallon")
## Bar Plots
# Bar Plot vertikal (default) sederhana
counts <- table(mtcars$gear)
barplot(counts, main="Car Distribution",
xlab="Number of Gears")
# Bar plot horisontal sederhana
counts <- table(mtcars$gear)
barplot(counts, main="Car Distribution", horiz=TRUE,
names.arg=c("3 Gears", "4 Gears", "5 Gears"))
# Bar plot bersusun dengan warna dan legenda
counts <- table(mtcars$vs, mtcars$gear)
barplot(counts, main="Car Distribution by Gears and VS",
xlab="Number of Gears", col=c("darkblue","red"),
legend = rownames(counts))
# Bar plot dengan pengelompokkan
counts <- table(mtcars$vs, mtcars$gear)
barplot(counts, main="Car Distribution by Gears and VS",
xlab="Number of Gears", col=c("darkblue","red"),
legend = rownames(counts), beside=TRUE)
## Line Charts
x <- c(1:5); y <- x # create some data
par(pch=22, col="red") # plotting symbol and color
par(mfrow=c(2,4)) # all plots on one page
opts = c("p","l","o","b","c","s","S","h")
for(i in 1:length(opts)){
heading = paste("type=",opts[i])
plot(x, y, type="n", main=heading)
lines(x, y, type=opts[i])
}
dev.off()
# Simple Pie Chart
slices <- c(10, 12,4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France")
pie(slices, labels = lbls, main="Pie Chart of Countries")
# Pie Chart with Percentages
slices <- c(10, 12, 4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France")
pct <- round(slices/sum(slices)*100)
lbls <- paste(lbls, pct) # add percents to labels
lbls <- paste(lbls,"%",sep="") # ad % to labels
pie(slices,labels = lbls, col=rainbow(length(lbls)),
main="Pie Chart of Countries")
## Boxplots
# Boxplot of MPG by Car Cylinders
boxplot(mpg~cyl,data=mtcars, main="Car Milage Data",
xlab="Number of Cylinders", ylab="Miles Per Gallon")
# Notched Boxplot of Tooth Growth Against 2 Crossed Factors
# boxes colored for ease of interpretation
boxplot(len~supp*dose, data=ToothGrowth, notch=TRUE,
col=(c("gold","darkgreen")),
main="Tooth Growth", xlab="Suppliment and Dose")
# Simple Scatterplot
attach(mtcars)
plot(wt, mpg, main="Scatterplot Example",
xlab="Car Weight ", ylab="Miles Per Gallon ", pch=19)
# Add fit lines
abline(lm(mpg~wt), col="red") # regression line (y~x)
lines(lowess(wt,mpg), col="blue") # lowess line (x,y)
# Scatterplot matrix sederhana
pairs(~mpg+disp+drat+wt,data=mtcars,
main="Simple Scatterplot Matrix")
# Scatterplot Matrices from the lattice Package
library(lattice)
splom(mtcars[c(1,3,5,6)]) # scatterplot matrix using variable no 1, 3, 5, 6
# Scatterplot Matrices from the glus Package
install.packages("gclus")
library(gclus)
dta <- mtcars[c(1,3,5,6)] # get data
dta.r <- abs(cor(dta)) # get correlations
dta.col <- dmat.color(dta.r) # get colors
# reorder variables so those with highest correlation
# are closest to the diagonal
dta.o <- order.single(dta.r)
cpairs(dta, dta.o, panel.colors=dta.col, gap=.5,
main="Variables Ordered and Colored by Correlation" )
# High Density Scatterplot with Binning
install.packages("hexbin")
library(hexbin)
x <- rnorm(1000) # membuat angka acak
y <- rnorm(1000)
bin <- hexbin(x, y, xbins=50)
plot(bin, main="Hexagonal Binning")
# High Density Scatterplot with Color Transparency
x <- rnorm(1000)
y <- rnorm(1000)
plot(x,y, main="PDF Scatterplot Example", col=rgb(0, 100, 0, 50,
maxColorValue=255), pch=16)
dev.off() # menghapus plot dari layar
# 3D Scatterplot menggunakan package scatterplot3d
install.packages("scatterplot3d")
library(scatterplot3d)
attach(mtcars)
scatterplot3d(wt,disp,mpg, main="3D Scatterplot")
# 3D Scatterplot with Coloring and Vertical Drop Lines
library(scatterplot3d)
attach(mtcars)
scatterplot3d(wt,disp,mpg, pch=16, highlight.3d=TRUE,
type="h", main="3D Scatterplot")
# 3D Scatterplot with Coloring and Vertical Lines
# and Regression Plane
dev.off()
library(scatterplot3d)
attach(mtcars)
s3d <-scatterplot3d(wt,disp,mpg, pch=16, highlight.3d=TRUE,
type="h", main="3D Scatterplot")
fit <- lm(mpg ~ wt+disp)
s3d$plane3d(fit)
# Spinning 3d Scatterplot
install.packages("rgl")
library(rgl)
plot3d(wt, disp, mpg, col="red", size=3)
## Multiple plot dalam satu halaman
plot.new() # untuk membuat plot baru
par(mfrow= c(2,2)) # mengatur jumlah baris dan kolom
par(mar = c(3, 3, 2, 2)) # mengatur margin antar plot
plot(x, y, pch = 20, main="plot 1")
plot(x, z, pch = 19, main="plot 2")
plot(y, z, pch = 1, main="plot 3")
plot(y, z, pch = 5, main="plot 4")
## Plot dua grup data dalam satu grafik
plot.new()
x <- rnorm(100)
y <- x + rnorm(100)
g <- gl(2, 50, labels = c("Kelas A", "Kelas B"))
str(g)
plot(x,y, type='n') # Draws no points
points(x[g == "Kelas A"], y[g == "Kelas A"],
col="blue",
pch=1)
points(x[g == "Kelas B"], y[g == "Kelas B"],
col="red",
pch=19)
legend("topleft", c("Kelas A", "Kelas B"),
col=c("blue", "red"),
pch=c(1,19))
# Membuat grafik dengan package `ggplot2`
# Membangun sebuah plot
library(ggplot2)
p <- ggplot(mpg, aes(displ, hwy))
p
library(ggplot2)
p <- ggplot(mpg, aes(displ, hwy))
p + geom_point()
p + layer(
mapping = NULL,
data = NULL,
geom = "point", geom_params = list(),
stat = "identity", stat_params = list(),
position = "identity"
)
# Data
mod <- loess(hwy ~ displ, data = mpg)
grid <- data.frame(displ = seq(min(mpg$displ), max(mpg$displ), length = 50))
grid$hwy <- predict(mod, newdata = grid)
head(grid)
std_resid <- resid(mod) / mod$s
outlier <- subset(mpg, abs(std_resid) > 2)
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_line(data = grid, colour = "blue", size = 1.5) +
geom_text(data = outlier, aes(label = model))
ggplot(mapping = aes(displ, hwy)) +
geom_point(data = mpg) +
geom_line(data = grid) +
geom_text(data = outlier, aes(label = model))
## Membuat spesifikasi estetik pada plot vs pada layer
ggplot(mpg, aes(displ, hwy, colour = class)) +
geom_point()
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(colour = class))
ggplot(mpg, aes(displ)) +
geom_point(aes(y = hwy, colour = class))
ggplot(mpg) +
geom_point(aes(displ, hwy, colour = class))
ggplot(mpg, aes(displ, hwy, colour = class)) +
geom_point() +
geom_smooth(se = FALSE)
ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(colour = class)) +
geom_smooth(se = FALSE)
# Setting vs mapping
ggplot(mpg, aes(cty, hwy)) +
geom_point(colour = "darkblue")
ggplot(mpg, aes(cty, hwy)) +
geom_point(aes(colour = "darkblue"))
ggplot(mpg, aes(cty, hwy)) +
geom_point(aes(colour = "darkblue")) +
scale_colour_identity()
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth(aes(colour = "loess"), method = "loess", se = FALSE) +
geom_smooth(aes(colour = "lm"), method = "lm", se = FALSE)
# Fungsi statistik dalam `ggplot2`
## fungsi `stat_summary()`
ggplot(mpg, aes(trans, cty)) +
geom_point() +
stat_summary(geom = "point", fun.y = "mean", colour = "red", size = 4)
ggplot(mpg, aes(trans, cty)) +
geom_point() +
geom_point(stat = "summary", fun.y = "mean", colour = "red", size = 4)
## Variabel yang dibuat oleh fungsi (_Generated variables_)
ggplot(diamonds, aes(price)) +
geom_histogram(aes(y = ..density..), binwidth = 500)
ggplot(diamonds, aes(price, colour = cut)) +
geom_freqpoly(binwidth = 500)
ggplot(diamonds, aes(price, colour = cut)) +
geom_freqpoly(aes(y = ..density..), binwidth = 500)
# Pengaturan posisi (_position adjustment_)
## opsi `fill`
dplot <- ggplot(diamonds, aes(clarity, fill = cut)) +
theme(legend.position = "none")
dplot + geom_bar()
dplot + geom_bar(position = "fill")
dplot + geom_bar(position = "dodge")
# opsi `position_identity`
dplot + geom_bar(position = "identity")
ggplot(diamonds, aes(clarity, colour = cut)) +
geom_freqpoly(aes(group = cut)) +
theme(legend.position = "none")
## Jittering
ggplot(mpg, aes(displ, hwy)) +
geom_point(position = "jitter")
ggplot(mpg, aes(displ, hwy)) +
geom_point(position = position_jitter(width = 0.02, height = 0.2))
<<<<<<< HEAD
```
=======
>>>>>>> 804e0da3b47257227493e610b78ef976d26f3b0e
# mtcars
attach(mtcars) # untuk memberitahu R bahwa kita menggunakan dataset `mtcars`
mtcars # melihat isi data
str(mtcars) # melihat tipe data, seluruhnya numerik
dim(mtcars) # melihat dimensi data = 32 baris dan 11 kolom
plot(wt, mpg) # membuat scatterplot antara wt (weight) dan mpg (miles per galon)
abline(lm(mpg~wt)) # membuat garis regresi
title("Regresi antara berat mobil (wt)-konsumsi BBM (mpg)")