-
Notifications
You must be signed in to change notification settings - Fork 9
/
splitters.py
executable file
·353 lines (302 loc) · 14.6 KB
/
splitters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import torch
import random
import numpy as np
from itertools import compress
from rdkit.Chem.Scaffolds import MurckoScaffold
from collections import defaultdict
from sklearn.model_selection import StratifiedKFold
# splitter function
def generate_scaffold(smiles, include_chirality=False):
"""
Obtain Bemis-Murcko scaffold from smiles
:param smiles:
:param include_chirality:
:return: smiles of scaffold
"""
scaffold = MurckoScaffold.MurckoScaffoldSmiles(
smiles=smiles, includeChirality=include_chirality)
return scaffold
# # test generate_scaffold
# s = 'Cc1cc(Oc2nccc(CCC)c2)ccc1'
# scaffold = generate_scaffold(s)
# assert scaffold == 'c1ccc(Oc2ccccn2)cc1'
def scaffold_split(dataset, smiles_list, task_idx=None, null_value=0,
frac_train=0.8, frac_valid=0.1, frac_test=0.1,
return_smiles=False):
"""
Adapted from https://github.com/deepchem/deepchem/blob/master/deepchem/splits/splitters.py
Split dataset by Bemis-Murcko scaffolds
This function can also ignore examples containing null values for a
selected task when splitting. Deterministic split
:param dataset: pytorch geometric dataset obj
:param smiles_list: list of smiles corresponding to the dataset obj
:param task_idx: column idx of the data.y tensor. Will filter out
examples with null value in specified task column of the data.y tensor
prior to splitting. If None, then no filtering
:param null_value: float that specifies null value in data.y to filter if
task_idx is provided
:param frac_train:
:param frac_valid:
:param frac_test:
:param return_smiles:
:return: train, valid, test slices of the input dataset obj. If
return_smiles = True, also returns ([train_smiles_list],
[valid_smiles_list], [test_smiles_list])
"""
np.testing.assert_almost_equal(frac_train + frac_valid + frac_test, 1.0)
if task_idx != None:
# filter based on null values in task_idx
# get task array
y_task = np.array([data.y[task_idx].item() for data in dataset])
# boolean array that correspond to non null values
non_null = y_task != null_value
smiles_list = list(compress(enumerate(smiles_list), non_null))
else:
non_null = np.ones(len(dataset)) == 1
smiles_list = list(compress(enumerate(smiles_list), non_null))
# create dict of the form {scaffold_i: [idx1, idx....]}
all_scaffolds = {}
for i, smiles in smiles_list:
scaffold = generate_scaffold(smiles, include_chirality=True)
if scaffold not in all_scaffolds:
all_scaffolds[scaffold] = [i]
else:
all_scaffolds[scaffold].append(i)
# sort from largest to smallest sets
all_scaffolds = {key: sorted(value) for key, value in all_scaffolds.items()}
all_scaffold_sets = [
scaffold_set for (scaffold, scaffold_set) in sorted(
all_scaffolds.items(), key=lambda x: (len(x[1]), x[1][0]), reverse=True)
]
# get train, valid test indices
train_cutoff = frac_train * len(smiles_list)
valid_cutoff = (frac_train + frac_valid) * len(smiles_list)
train_idx, valid_idx, test_idx = [], [], []
for scaffold_set in all_scaffold_sets:
if len(train_idx) + len(scaffold_set) > train_cutoff:
if len(train_idx) + len(valid_idx) + len(scaffold_set) > valid_cutoff:
test_idx.extend(scaffold_set)
else:
valid_idx.extend(scaffold_set)
else:
train_idx.extend(scaffold_set)
assert len(set(train_idx).intersection(set(valid_idx))) == 0
assert len(set(test_idx).intersection(set(valid_idx))) == 0
train_dataset = dataset[torch.tensor(train_idx)]
valid_dataset = dataset[torch.tensor(valid_idx)]
test_dataset = dataset[torch.tensor(test_idx)]
if not return_smiles:
return train_dataset, valid_dataset, test_dataset
else:
train_smiles = [smiles_list[i][1] for i in train_idx]
valid_smiles = [smiles_list[i][1] for i in valid_idx]
test_smiles = [smiles_list[i][1] for i in test_idx]
return train_dataset, valid_dataset, test_dataset, (train_smiles,
valid_smiles,
test_smiles)
def random_scaffold_split(dataset, smiles_list, task_idx=None, null_value=0,
frac_train=0.8, frac_valid=0.1, frac_test=0.1, seed=0):
"""
Adapted from https://github.com/pfnet-research/chainer-chemistry/blob/master/chainer_chemistry/dataset/splitters/scaffold_splitter.py
Split dataset by Bemis-Murcko scaffolds
This function can also ignore examples containing null values for a
selected task when splitting. Deterministic split
:param dataset: pytorch geometric dataset obj
:param smiles_list: list of smiles corresponding to the dataset obj
:param task_idx: column idx of the data.y tensor. Will filter out
examples with null value in specified task column of the data.y tensor
prior to splitting. If None, then no filtering
:param null_value: float that specifies null value in data.y to filter if
task_idx is provided
:param frac_train:
:param frac_valid:
:param frac_test:
:param seed;
:return: train, valid, test slices of the input dataset obj
"""
np.testing.assert_almost_equal(frac_train + frac_valid + frac_test, 1.0)
if task_idx != None:
# filter based on null values in task_idx
# get task array
y_task = np.array([data.y[task_idx].item() for data in dataset])
# boolean array that correspond to non null values
non_null = y_task != null_value
smiles_list = list(compress(enumerate(smiles_list), non_null))
else:
non_null = np.ones(len(dataset)) == 1
smiles_list = list(compress(enumerate(smiles_list), non_null))
rng = np.random.RandomState(seed)
scaffolds = defaultdict(list)
for ind, smiles in smiles_list:
scaffold = generate_scaffold(smiles, include_chirality=True)
scaffolds[scaffold].append(ind)
scaffold_sets = rng.permutation(list(scaffolds.values()))
n_total_valid = int(np.floor(frac_valid * len(dataset)))
n_total_test = int(np.floor(frac_test * len(dataset)))
train_idx = []
valid_idx = []
test_idx = []
for scaffold_set in scaffold_sets:
if len(valid_idx) + len(scaffold_set) <= n_total_valid:
valid_idx.extend(scaffold_set)
elif len(test_idx) + len(scaffold_set) <= n_total_test:
test_idx.extend(scaffold_set)
else:
train_idx.extend(scaffold_set)
train_dataset = dataset[torch.tensor(train_idx)]
valid_dataset = dataset[torch.tensor(valid_idx)]
test_dataset = dataset[torch.tensor(test_idx)]
return train_dataset, valid_dataset, test_dataset
def random_split(dataset, task_idx=None, null_value=0,
frac_train=0.8, frac_valid=0.1, frac_test=0.1, seed=0,
smiles_list=None):
"""
:param dataset:
:param task_idx:
:param null_value:
:param frac_train:
:param frac_valid:
:param frac_test:
:param seed:
:param smiles_list: list of smiles corresponding to the dataset obj, or None
:return: train, valid, test slices of the input dataset obj. If
smiles_list != None, also returns ([train_smiles_list],
[valid_smiles_list], [test_smiles_list])
"""
np.testing.assert_almost_equal(frac_train + frac_valid + frac_test, 1.0)
if task_idx != None:
# filter based on null values in task_idx
# get task array
y_task = np.array([data.y[task_idx].item() for data in dataset])
non_null = y_task != null_value # boolean array that correspond to non null values
idx_array = np.where(non_null)[0]
dataset = dataset[torch.tensor(idx_array)] # examples containing non
# null labels in the specified task_idx
else:
pass
num_mols = len(dataset)
random.seed(seed)
all_idx = list(range(num_mols))
random.shuffle(all_idx)
train_idx = all_idx[:int(frac_train * num_mols)]
valid_idx = all_idx[int(frac_train * num_mols):int(frac_valid * num_mols)
+ int(frac_train * num_mols)]
test_idx = all_idx[int(frac_valid * num_mols) + int(frac_train * num_mols):]
assert len(set(train_idx).intersection(set(valid_idx))) == 0
assert len(set(valid_idx).intersection(set(test_idx))) == 0
assert len(train_idx) + len(valid_idx) + len(test_idx) == num_mols
train_dataset = dataset[torch.tensor(train_idx)]
valid_dataset = dataset[torch.tensor(valid_idx)]
test_dataset = dataset[torch.tensor(test_idx)]
if smiles_list is None:
return train_dataset, valid_dataset, test_dataset
else:
train_smiles = [smiles_list[i] for i in train_idx]
valid_smiles = [smiles_list[i] for i in valid_idx]
test_smiles = [smiles_list[i] for i in test_idx]
return train_dataset, valid_dataset, test_dataset, (train_smiles,
valid_smiles,
test_smiles)
def cv_random_split(dataset, fold_idx = 0,
frac_train=0.9, frac_valid=0.1, seed=0,
smiles_list=None):
"""
:param dataset:
:param task_idx:
:param null_value:
:param frac_train:
:param frac_valid:
:param frac_test:
:param seed:
:param smiles_list: list of smiles corresponding to the dataset obj, or None
:return: train, valid, test slices of the input dataset obj. If
smiles_list != None, also returns ([train_smiles_list],
[valid_smiles_list], [test_smiles_list])
"""
np.testing.assert_almost_equal(frac_train + frac_valid, 1.0)
skf = StratifiedKFold(n_splits=10, shuffle = True, random_state = seed)
labels = [data.y.item() for data in dataset]
idx_list = []
for idx in skf.split(np.zeros(len(labels)), labels):
idx_list.append(idx)
train_idx, val_idx = idx_list[fold_idx]
train_dataset = dataset[torch.tensor(train_idx)]
valid_dataset = dataset[torch.tensor(val_idx)]
return train_dataset, valid_dataset
if __name__ == "__main__":
from loader import MoleculeDataset
from rdkit import Chem
import pandas as pd
# # test scaffold_split
dataset = MoleculeDataset('dataset/tox21', dataset='tox21')
smiles_list = pd.read_csv('dataset/tox21/processed/smiles.csv', header=None)[0].tolist()
train_dataset, valid_dataset, test_dataset = scaffold_split(dataset, smiles_list, task_idx=None, null_value=0, frac_train=0.8,frac_valid=0.1, frac_test=0.1)
# train_dataset, valid_dataset, test_dataset = random_scaffold_split(dataset, smiles_list, task_idx=None, null_value=0, frac_train=0.8,frac_valid=0.1, frac_test=0.1, seed = 0)
unique_ids = set(train_dataset.data.id.tolist() +
valid_dataset.data.id.tolist() +
test_dataset.data.id.tolist())
assert len(unique_ids) == len(dataset) # check that we did not have any
# missing or overlapping examples
# test scaffold_split with smiles returned
dataset = MoleculeDataset('dataset/bbbp', dataset='bbbp')
smiles_list = pd.read_csv('dataset/bbbp/processed/smiles.csv', header=None)[
0].tolist()
train_dataset, valid_dataset, test_dataset, (train_smiles, valid_smiles,
test_smiles) = \
scaffold_split(dataset, smiles_list, task_idx=None, null_value=0,
frac_train=0.8,frac_valid=0.1, frac_test=0.1,
return_smiles=True)
assert len(train_dataset) == len(train_smiles)
for i in range(len(train_dataset)):
data_obj_n_atoms = train_dataset[i].x.size()[0]
smiles_n_atoms = len(list(Chem.MolFromSmiles(train_smiles[
i]).GetAtoms()))
assert data_obj_n_atoms == smiles_n_atoms
assert len(valid_dataset) == len(valid_smiles)
for i in range(len(valid_dataset)):
data_obj_n_atoms = valid_dataset[i].x.size()[0]
smiles_n_atoms = len(list(Chem.MolFromSmiles(valid_smiles[
i]).GetAtoms()))
assert data_obj_n_atoms == smiles_n_atoms
assert len(test_dataset) == len(test_smiles)
for i in range(len(test_dataset)):
data_obj_n_atoms = test_dataset[i].x.size()[0]
smiles_n_atoms = len(list(Chem.MolFromSmiles(test_smiles[
i]).GetAtoms()))
assert data_obj_n_atoms == smiles_n_atoms
# test random_split
from loader import MoleculeDataset
dataset = MoleculeDataset('dataset/tox21', dataset='tox21')
train_dataset, valid_dataset, test_dataset = random_split(dataset, task_idx=None, null_value=0, frac_train=0.8,frac_valid=0.1, frac_test=0.1)
unique_ids = set(train_dataset.data.id.tolist() +
valid_dataset.data.id.tolist() +
test_dataset.data.id.tolist())
assert len(unique_ids) == len(dataset) # check that we did not have any
# missing or overlapping examples
# test random_split with smiles returned
dataset = MoleculeDataset('dataset/bbbp', dataset='bbbp')
smiles_list = pd.read_csv('dataset/bbbp/processed/smiles.csv', header=None)[
0].tolist()
train_dataset, valid_dataset, test_dataset, (train_smiles, valid_smiles,
test_smiles) = \
random_split(dataset, task_idx=None, null_value=0,
frac_train=0.8, frac_valid=0.1, frac_test=0.1, seed=42,
smiles_list=smiles_list)
assert len(train_dataset) == len(train_smiles)
for i in range(len(train_dataset)):
data_obj_n_atoms = train_dataset[i].x.size()[0]
smiles_n_atoms = len(list(Chem.MolFromSmiles(train_smiles[
i]).GetAtoms()))
assert data_obj_n_atoms == smiles_n_atoms
assert len(valid_dataset) == len(valid_smiles)
for i in range(len(valid_dataset)):
data_obj_n_atoms = valid_dataset[i].x.size()[0]
smiles_n_atoms = len(list(Chem.MolFromSmiles(valid_smiles[
i]).GetAtoms()))
assert data_obj_n_atoms == smiles_n_atoms
assert len(test_dataset) == len(test_smiles)
for i in range(len(test_dataset)):
data_obj_n_atoms = test_dataset[i].x.size()[0]
smiles_n_atoms = len(list(Chem.MolFromSmiles(test_smiles[
i]).GetAtoms()))
assert data_obj_n_atoms == smiles_n_atoms