-
Notifications
You must be signed in to change notification settings - Fork 99
/
data.py
138 lines (116 loc) · 5.48 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import logging
import os
import torchvision
from PIL import Image
from torch.utils.data import SubsetRandomSampler, Sampler
from torch.utils.data.dataset import ConcatDataset
from torchvision.transforms import transforms
from sklearn.model_selection import StratifiedShuffleSplit
from theconf import Config as C
from RandAugment.augmentations import *
from RandAugment.common import get_logger
from RandAugment.imagenet import ImageNet
from RandAugment.augmentations import Lighting, RandAugment
logger = get_logger('RandAugment')
logger.setLevel(logging.INFO)
_IMAGENET_PCA = {
'eigval': [0.2175, 0.0188, 0.0045],
'eigvec': [
[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203],
]
}
_CIFAR_MEAN, _CIFAR_STD = (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)
def get_dataloaders(dataset, batch, dataroot, split=0.15, split_idx=0):
if 'cifar' in dataset or 'svhn' in dataset:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(_CIFAR_MEAN, _CIFAR_STD),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(_CIFAR_MEAN, _CIFAR_STD),
])
elif 'imagenet' in dataset:
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224, scale=(0.08, 1.0), interpolation=Image.BICUBIC),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(
brightness=0.4,
contrast=0.4,
saturation=0.4,
),
transforms.ToTensor(),
Lighting(0.1, _IMAGENET_PCA['eigval'], _IMAGENET_PCA['eigvec']),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transform_test = transforms.Compose([
transforms.Resize(256, interpolation=Image.BICUBIC),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
else:
raise ValueError('dataset=%s' % dataset)
logger.debug('augmentation: %s' % C.get()['aug'])
if C.get()['aug'] == 'randaugment':
transform_train.transforms.insert(0, RandAugment(C.get()['randaug']['N'], C.get()['randaug']['M']))
elif C.get()['aug'] in ['default', 'inception', 'inception320']:
pass
else:
raise ValueError('not found augmentations. %s' % C.get()['aug'])
if C.get()['cutout'] > 0:
transform_train.transforms.append(CutoutDefault(C.get()['cutout']))
if dataset == 'cifar10':
total_trainset = torchvision.datasets.CIFAR10(root=dataroot, train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR10(root=dataroot, train=False, download=True, transform=transform_test)
elif dataset == 'cifar100':
total_trainset = torchvision.datasets.CIFAR100(root=dataroot, train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR100(root=dataroot, train=False, download=True, transform=transform_test)
elif dataset == 'svhn':
trainset = torchvision.datasets.SVHN(root=dataroot, split='train', download=True, transform=transform_train)
extraset = torchvision.datasets.SVHN(root=dataroot, split='extra', download=True, transform=transform_train)
total_trainset = ConcatDataset([trainset, extraset])
testset = torchvision.datasets.SVHN(root=dataroot, split='test', download=True, transform=transform_test)
elif dataset == 'imagenet':
total_trainset = ImageNet(root=os.path.join(dataroot, 'imagenet-pytorch'), transform=transform_train)
testset = ImageNet(root=os.path.join(dataroot, 'imagenet-pytorch'), split='val', transform=transform_test)
# compatibility
total_trainset.targets = [lb for _, lb in total_trainset.samples]
else:
raise ValueError('invalid dataset name=%s' % dataset)
train_sampler = None
if split > 0.0:
sss = StratifiedShuffleSplit(n_splits=5, test_size=split, random_state=0)
sss = sss.split(list(range(len(total_trainset))), total_trainset.targets)
for _ in range(split_idx + 1):
train_idx, valid_idx = next(sss)
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetSampler(valid_idx)
else:
valid_sampler = SubsetSampler([])
trainloader = torch.utils.data.DataLoader(
total_trainset, batch_size=batch, shuffle=True if train_sampler is None else False, num_workers=32, pin_memory=True,
sampler=train_sampler, drop_last=True)
validloader = torch.utils.data.DataLoader(
total_trainset, batch_size=batch, shuffle=False, num_workers=16, pin_memory=True,
sampler=valid_sampler, drop_last=False)
testloader = torch.utils.data.DataLoader(
testset, batch_size=batch, shuffle=False, num_workers=32, pin_memory=True,
drop_last=False
)
return train_sampler, trainloader, validloader, testloader
class SubsetSampler(Sampler):
r"""Samples elements from a given list of indices, without replacement.
Arguments:
indices (sequence): a sequence of indices
"""
def __init__(self, indices):
self.indices = indices
def __iter__(self):
return (i for i in self.indices)
def __len__(self):
return len(self.indices)