-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlosses.py
94 lines (78 loc) · 3.24 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from keras.losses import binary_crossentropy
import keras.backend as K
def dice_coeff(y_true, y_pred):
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
score = (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
return score
def dice_loss(y_true, y_pred):
loss = 1 - dice_coeff(y_true, y_pred)
return loss
def bce_dice_loss(y_true, y_pred):
loss = binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred)
return loss
def weighted_dice_coeff(y_true, y_pred, weight):
smooth = 1.
w, m1, m2 = weight * weight, y_true, y_pred
intersection = (m1 * m2)
score = (2. * K.sum(w * intersection) + smooth) / (K.sum(w * m1) + K.sum(w * m2) + smooth)
return score
def weighted_dice_loss(y_true, y_pred):
y_true = K.cast(y_true, 'float32')
y_pred = K.cast(y_pred, 'float32')
# if we want to get same size of output, kernel size must be odd number
if K.int_shape(y_pred)[1] == 128:
kernel_size = 11
elif K.int_shape(y_pred)[1] == 256:
kernel_size = 21
elif K.int_shape(y_pred)[1] == 512:
kernel_size = 21
elif K.int_shape(y_pred)[1] == 1152:
kernel_size = 41
else:
raise ValueError('Unexpected image size')
averaged_mask = K.pool2d(
y_true, pool_size=(kernel_size, kernel_size), strides=(1, 1), padding='same', pool_mode='avg')
border = K.cast(K.greater(averaged_mask, 0.005), 'float32') * K.cast(K.less(averaged_mask, 0.995), 'float32')
weight = K.ones_like(averaged_mask)
w0 = K.sum(weight)
weight += border * 2
w1 = K.sum(weight)
weight *= (w0 / w1)
loss = 1 - weighted_dice_coeff(y_true, y_pred, weight)
return loss
def weighted_bce_loss(y_true, y_pred, weight):
# avoiding overflow
epsilon = 1e-7
y_pred = K.clip(y_pred, epsilon, 1. - epsilon)
logit_y_pred = K.log(y_pred / (1. - y_pred))
# https://www.tensorflow.org/api_docs/python/tf/nn/weighted_cross_entropy_with_logits
loss = (1. - y_true) * logit_y_pred + (1. + (weight - 1.) * y_true) * \
(K.log(1. + K.exp(-K.abs(logit_y_pred))) + K.maximum(-logit_y_pred, 0.))
return K.sum(loss) / K.sum(weight)
def weighted_bce_dice_loss(y_true, y_pred):
y_true = K.cast(y_true, 'float32')
y_pred = K.cast(y_pred, 'float32')
# if we want to get same size of output, kernel size must be odd number
if K.int_shape(y_pred)[1] == 128:
kernel_size = 11
elif K.int_shape(y_pred)[1] == 256:
kernel_size = 21
elif K.int_shape(y_pred)[1] == 512:
kernel_size = 21
elif K.int_shape(y_pred)[1] == 1152:
kernel_size = 41
else:
raise ValueError('Unexpected image size')
averaged_mask = K.pool2d(
y_true, pool_size=(kernel_size, kernel_size), strides=(1, 1), padding='same', pool_mode='avg')
border = K.cast(K.greater(averaged_mask, 0.005), 'float32') * K.cast(K.less(averaged_mask, 0.995), 'float32')
weight = K.ones_like(averaged_mask)
w0 = K.sum(weight)
weight += border * 2
w1 = K.sum(weight)
weight *= (w0 / w1)
loss = weighted_bce_loss(y_true, y_pred, weight) + (1 - weighted_dice_coeff(y_true, y_pred, weight))
return loss