du.df_2_sqlite(df, db_path, table_name)\nš· Creates a SQLite database file from DataFrame\n\nš ARGUMENTS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\n - df (DataFrame)\n - db_path (Path) Database name with path\n - table_name (str) Table name\n\nšÆ RETURNS\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\n ā SQLite file (database) du.df_2_xlsx(df, fn, sn, ac=1, m=0, s=0, sr=0)\nš· Saves Dataframe(s) to worksheet(s) in a single Excel xlsx file.\n\nš ARGUMENTS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\n- df (DataFrame)\n- fn (Path(str)) File Name\n- sn (str) Sheet Name\n- ac (int) Auto-resize column 0 = Off, 1 = On \n- m (int) Multiple dataframes 0 = Single, 1 = Multi*\n- s (int) Styling 0 = Header, 1 = Table\n\nMulti* = If flag m=1, function expect the list of dataframes \n and list of worksheet names of equal size, and it will\n produce a single xlsx file with multiple worksheets.\n\nšÆ RETURNS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\nā Single xlsx file with worksheet(s) du.df_dtypes(df, mode)\nš· Prints particular DataFrame types\n\nš ARGUMENTS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\n- df (DataFrame)\n- mode (int)\n 0 = print\n 1 = NUM column list\n 2 = DAT column list\n 3 = TXT column list\n 4 = ALL columns list\n\nšÆ RETURNS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\nā Text data du.print_df()\nš· Prints a DataFrame.\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\nš FLAGS: 1 = ON, 0 = OFF\n\nš ARGUMENTS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\n- df Dataframe DataFrame\n- d DTypes int\n- dt DTypes tabular int\n- c Columns int\n- v Values int\n- vt Values tabular int 1=simple\n 2=psql\n 3=fancy_grid\n- e Exit after print int\n\nšÆ RETURNS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\nā DataFrame information and values du.df_append_2_xlsx(df, file_name, sheet_name)\nš· Appends data from DataFrame \n to a new worksheet in existing file\n\nāļø PREREQUISITES:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\npip install openpyxl\n \nš ARGUMENTS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\n- df (DataFrame) your data\n- file_name (Path) Existing xlsx file\n- sheet_name (str) Sheet Name for a new data\n\nšÆ RETURNS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\nā File list fi.remove_sublist(main_list, unwanted_list)\nš· Remove items in sub-list from main list\n\nš ARGUMENTS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\n- main_list list from which I want to remove..\n- sub_list ..this istems.\n\nšÆ RETURNS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\nā Reduced main list fi.check_sublist(main_list, sub_list, exception=0)\nš· Check if list conatins a whole or partial sublist\n\nš ARGUMENTS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\n- main_list list in which I try to find..\n- sub_list ..this sub-list\n- exception=0 with exception of n items. \n Default is 0 which means all items \n of sub-list should be in main list \n to get True as a result.\nšÆ RETURNS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\nā True or False fi.list_slice (list, chunks)\nš· Slice list to smaller and equal pieces \n (exept the last chunk)\n\nš ARGUMENTS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\n- list (list) source list\n- chunks (int) desired number of items in sublist\n\nšÆ RETURNS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\nā Nested list of sliced sublist of equal size fi.replace_many(text, dic)\nš· Multiple replacement in given text \n from replacement dictionary\n\nš ARGUMENTS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\n- text (str) Text which will be changed\n- dic (dictionary) Replace dictionary\n\nšÆ RETURNS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\nā New text fi.fuzzy_compare_lists(source_list, match_list, limit_level, fast=0)\nš· Compare 2 lists using RapidFuzz library \n with Levenstein algorithm\n\nāļø PREREQUISITES:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\npip install rapidfuzz\n\nš ARGUMENTS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\n- source_list (list[str]) Items that we will comapre\n- match_list (list[str]) ...with items from this list\n- limit_level (int) and use n best scores\n- fast (int) scorer is fuzz.QRatio\n\nšÆ RETURNS:\nāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā\nā DataFrame