du.df_2_sqlite(df, db_path, table_name)\nšŸ· Creates a SQLite database file from DataFrame\n\nšŸ“Œ ARGUMENTS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\n - df         (DataFrame)\n - db_path    (Path) Database name with path\n - table_name (str)  Table name\n\nšŸŽÆ RETURNS\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\n ā†’ SQLite file (database)
du.df_2_xlsx(df, fn, sn, ac=1, m=0, s=0, sr=0)\nšŸ· Saves Dataframe(s) to worksheet(s) in a single Excel xlsx file.\n\nšŸ“Œ ARGUMENTS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\n- df  (DataFrame)\n- fn  (Path(str))  File Name\n- sn  (str)        Sheet Name\n- ac  (int)        Auto-resize column   0 = Off,    1 = On    \n- m   (int)        Multiple dataframes  0 = Single, 1 = Multi*\n- s   (int)        Styling              0 = Header, 1 = Table\n\nMulti* = If flag m=1, function expect the list of dataframes \n         and list of worksheet names of equal size, and it will\n         produce a single xlsx file with multiple worksheets.\n\nšŸŽÆ RETURNS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\nā†’ Single xlsx file with worksheet(s)
du.df_dtypes(df, mode)\nšŸ· Prints particular DataFrame types\n\nšŸ“Œ ARGUMENTS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\n- df    (DataFrame)\n- mode  (int)\n    0 = print\n    1 = NUM column list\n    2 = DAT column list\n    3 = TXT column list\n    4 = ALL columns list\n\nšŸŽÆ RETURNS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\nā†’ Text data
du.print_df()\nšŸ· Prints a DataFrame.\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\nšŸ FLAGS:  1 = ON, 0 = OFF\n\nšŸ“Œ ARGUMENTS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\n- df Dataframe         DataFrame\n- d  DTypes            int\n- dt DTypes tabular    int\n- c  Columns           int\n- v  Values            int\n- vt Values tabular    int   1=simple\n                             2=psql\n                             3=fancy_grid\n- e  Exit after print  int\n\nšŸŽÆ RETURNS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\nā†’ DataFrame information and values
du.df_append_2_xlsx(df, file_name, sheet_name)\nšŸ· Appends data from DataFrame \n   to a new worksheet in existing file\n\nāš™ļø PREREQUISITES:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\npip install openpyxl\n    \nšŸ“Œ ARGUMENTS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\n- df         (DataFrame) your data\n- file_name  (Path)      Existing xlsx file\n- sheet_name (str)       Sheet Name for a new data\n\nšŸŽÆ RETURNS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\nā†’ File list
fi.remove_sublist(main_list, unwanted_list)\nšŸ· Remove items in sub-list from main list\n\nšŸ“Œ ARGUMENTS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\n- main_list  list from which I want to remove..\n- sub_list   ..this istems.\n\nšŸŽÆ RETURNS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\nā†’ Reduced main list
fi.check_sublist(main_list, sub_list, exception=0)\nšŸ· Check if list conatins a whole or partial sublist\n\nšŸ“Œ ARGUMENTS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\n- main_list     list in which I try to find..\n- sub_list      ..this sub-list\n- exception=0   with exception of n items. \n                Default is 0 which means all items \n                of sub-list should be in main list \n                to get True as a result.\nšŸŽÆ RETURNS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\nā†’ True or False
fi.list_slice (list, chunks)\nšŸ· Slice list to smaller and equal pieces \n   (exept the last chunk)\n\nšŸ“Œ ARGUMENTS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\n- list   (list) source list\n- chunks (int)  desired number of items in sublist\n\nšŸŽÆ RETURNS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\nā†’ Nested list of sliced sublist of equal size
fi.replace_many(text, dic)\nšŸ· Multiple replacement in given text \n   from replacement dictionary\n\nšŸ“Œ ARGUMENTS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\n- text (str)         Text which will be changed\n- dic  (dictionary)  Replace dictionary\n\nšŸŽÆ RETURNS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\nā†’ New text
fi.fuzzy_compare_lists(source_list, match_list, limit_level, fast=0)\nšŸ· Compare 2 lists using RapidFuzz library \n   with Levenstein algorithm\n\nāš™ļø PREREQUISITES:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\npip install rapidfuzz\n\nšŸ“Œ ARGUMENTS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\n- source_list (list[str])   Items that we will comapre\n- match_list  (list[str])   ...with items from this list\n- limit_level (int)         and use n best scores\n- fast        (int)         scorer is fuzz.QRatio\n\nšŸŽÆ RETURNS:\nā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•ā€•\nā†’ DataFrame