-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmedian-tt.py
458 lines (311 loc) · 16.3 KB
/
median-tt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
# 2646 - Averaging truth tables
# path/row: 46027
# Import the Earth Engine Python Package
import os
import sys
import datetime
import subprocess
import os,time
import csv
import imp
import numpy
import config
import ee
# Initialize the Earth Engine object, using the authentication credentials.
ee.Initialize()
purgetareatemp = [
[-124.30352972536059, 47.27128166063033]
, [-123.82925991252449, 46.99729412374967]
, [-123.41252757794297, 47.01561045135977]
, [-123.05027483485514, 46.771956019864334]
, [-122.44190923893768, 46.763439270315246]
, [-121.94897256625057, 47.22100723424152]
, [-121.77901836750891, 47.487138539754966]
, [-121.75131153567213, 47.88025613902951]
, [-121.73334011579027, 48.24438682613085]
, [-121.97477014374817, 48.47585180754761]
, [-121.8872009786362, 48.63440708876777]
, [-122.08018971228478, 48.68415986506167]
, [-122.16362767200712, 48.748252827165615]
, [-122.1335388193238, 48.90459170207551]
, [-122.09164888171688, 49.00874288419323]
, [-123.31699205680519, 49.0073000568708]
, [-122.99423732371145, 48.83336138137028]
, [-122.97028555875431, 48.77562055398919]
, [-123.25352154725601, 48.696430820418186]
, [-123.14524526931791, 48.377222174739494]
, [-122.85605336746943, 48.34034389530577]
, [-122.96268407568925, 48.20110486049082]
, [-123.86727220731296, 48.20751922706289]
, [-124.78084798923732, 48.443982161696766]
, [-124.69448407110332, 47.853999226102864]
, [-124.55536931824389, 47.70043015361133]
, [-124.48645933302026, 47.56454360734233]
]
purgetarea_temp = ee.Geometry.Polygon(purgetareatemp)
numberOfClasses = 9
maxPixelRequestSize = 1e10
numclassbaseimg = numberOfClasses + 1 #number of classes in base image + 1
numclasseventimg = numberOfClasses + 1 #number of classes in event image + 1
minclassbaseimg = 1
transitionDampeningFactor = 1 #1 = no change, lower more dampening (0 - 1)
exporttables = True;
tt_type = "A"
firstPrefix = "users/alemlakes/BULC/2500/2628/"
suffix = "_2628_classification_A_filtered"
path = "truth_table_" + tt_type;
#print(imagesData[1])
imagesName = [
'LT50450281985132PAC00'
, 'LT50450281985196PAC08'
, 'LT50450281985228PAC09'
, 'LT50450281986199XXX21'
, 'LT50450281993314XXX02' # example data set
, 'LT50450281994269XXX02'
, 'LT50450281995176XXX01'
, 'LT50450281995256XXX02'
, 'LT50450281995288XXX00'
, 'LT50450281995304AAA01'
, 'LT50450281996147XXX02'
]
imagesData = []
imagesURL = []
if not os.path.exists(path): #checking if folder doesn't exist
os.makedirs(path) # make folder
for names in imagesName:
filename = names + ".done"
make_file = names + ".notdone"
imagesData.append(ee.Image(firstPrefix+names+suffix))
imagesURL.append(firstPrefix+names+suffix)
if os.path.isfile(str(path+"/"+filename))==False:
print("creating .notdone because .done doesn't exist", names)
#os.remove(str(path+"/"+filename))
file_done = open(str(path+"/"+make_file), 'w');
file_done.write(names);
file_done.close()
new_path = names+"/"+"TransitionTable"+tt_type
if not os.path.exists(new_path): #checking if image name folder doesn't exist
os.makedirs(str(names+"/"+"TransitionTable"+tt_type)) # make folder
##################################################################################
############################ logic start #########################################
##################################################################################
def afn_histogram(firstimg, secimg, purgetarea_temp, maxPixelRequestSize, numclassbaseimg, numclasseventimg, minclassbaseimg):
xlist = [];
sublist = [];
# Create initial list of list
for i in range(0, numclassbaseimg):
sublist = [];
for j in range(0, numclassbaseimg):
sublist.append(0)
xlist.append(sublist);
#1000(column) + (row) to calculate confusion table
img2 = firstimg.addBands(firstimg); #combine bands for caluclations
img2 = img2.multiply(1000); #multiply image by 1000
img = secimg.add(img2); #add bands together
# ---NEW METHOD BEGIN----
geom1 = firstimg.geometry()
geom2 = secimg.geometry()
intersection_polygon = ee.Algorithms.If(geom2.intersects(geom1), geom2.intersection(geom1), purgetarea_temp); # faster, in theory
intersection_polygon = ee.Geometry(intersection_polygon).buffer(30)
pixelcount = img.mask(127).reduceRegion( reducer=ee.Reducer.count().group(0),geometry=intersection_polygon,maxPixels=maxPixelRequestSize).values().getInfo()[0]
# For the each group find the row and column
for i in range(0, len(pixelcount)):
row = pixelcount[i]['group']% 1000; # calculate the row by getting the remainder of the group # divided by 1000
column = (pixelcount[i]['group'] - row) / 1000; # calculate column by subtracting the row and dividing by 1000
# plug in count into specific row and column in blank list of list
if (row >= 0 and column >= 0 and row < numclasseventimg and column < numclassbaseimg ): # make sure size of confusion table same as numclassbaseimg X numclasseventimg
xlist[column][row] = pixelcount[i]['count']; #plug in count at specified point
totallist = [] # calculate total pixel count for calculating probabilities
#print(len(xlist)) # 9
for j in range(0, len(xlist)): # Calculates the totals of each class in firstimg
count = 0; #set count to zero
n = len(xlist[j])
for i in range(0, n):
count += xlist[j][i]; #add in all number in the same class
totallist.append(count)
return {
'histolist': xlist
, 'total': totallist
}
def afn_probabilitylist(histogram, total):
confusion = [];
confusionlist = []
for j in range (0, len(histogram)):
histo1 = histogram[j];
total1 = total[j]
if total1 == 0:
confusionlist.append(histo1); # if no class in day i image then list = 0
else:
confusion = [];
total1 = ee.Number(total1).float();
for i in range (0, numclasseventimg): #hardcoded nonsense
confusion.append(ee.Number(histo1[i]).divide(total1).float()); # Divide histogram value with total to get probability
confusionlist.append(confusion)
return (confusionlist); #output as object where "variable".img is the image created and "variable".confusion is the confusion table created
def afn_dampentransitions(thevalue):
# tried to round the numbers to see if it is faster. doesn't seem to be.
addvalue = ee.Number((1 - transitionDampeningFactor) / (numclasseventimg)).multiply(10000).round().divide(10000).float(); #hard coded nonsend
thevalue = ee.Number(thevalue).float();
thevalue = thevalue.multiply(transitionDampeningFactor);
thevalue = thevalue.add(addvalue);
return (thevalue);
def myTranspose(lst):
newlist = []
i = 0
while i < len(lst):
j = 0
colvec = []
while j < len(lst):
colvec.append(lst[j][i])
j = j + 1
newlist.append(colvec)
i = i + 1
return newlist
def median(lst):
return numpy.median(numpy.array(lst))
def afn_truthtable(number, maxPixelRequestSize, purgetarea_temp, firstimg, secimg, numclassbaseimg, numclasseventimg, name_first, name_second, minclassbaseimg):
trutharray = [];
histogram = [];
newclassimg = [];
classimg = [];
undampen = [];
problist = [];
export_path = name_second+"/"+"TransitionTable"+tt_type+"/"
histogram = afn_histogram(firstimg, secimg, purgetarea_temp, maxPixelRequestSize, numclassbaseimg, numclasseventimg, minclassbaseimg); #create histogram
problist = afn_probabilitylist(histogram['histolist'], histogram['total']); #use histogram to create probability
undampen = problist; #used to create output of undamped probabilities
for i in range (0, len(problist)):
data = ee.List(problist[i])
trutharray.append(data.map(afn_dampentransitions)); #output of dampened probabilities
if exporttables == True:
outputundampen = myTranspose(undampen)
outputPixelCount = myTranspose(histogram['histolist'])
totalPixel = histogram['total']
trutharray2 = []
exportUndampen = [];
for i in range (0, numclassbaseimg):
innerUndampenPixels = [];
for j in range (0, numclassbaseimg):
innerUndampenPixels.append(ee.Number(outputundampen[i][j]));
data = ee.List(innerUndampenPixels)
print("inner outputundampen", data.getInfo())
exportUndampen.append(data.getInfo());
fl = open(str(export_path + "3." + name_second + "-undampen-transition-table-" + name_first+".csv"), 'w')
writer = csv.writer(fl)
writer.writerow(['base:', name_second, 'against', name_first, 'label5','label6', 'label7',]) #if needed
for values in exportUndampen:
writer.writerow(values)
fl.close()
print("writing out new undampened pixel counts CSV file")
exportPixelCounts = [];
for i in range (0, numclassbaseimg):
innerPixelCounts = [];
for j in range (0, numclassbaseimg):
innerPixelCounts.append(ee.Number(outputPixelCount[i][j]));
data = ee.List(innerPixelCounts)
print("inner pixel count comparison", data.getInfo())
exportPixelCounts.append(data.getInfo());
fl = open(str(export_path +"2." +name_second + "-pixel-counts-" + name_first+".csv"), 'w')
writer = csv.writer(fl)
writer.writerow(['base:', name_second, 'against', name_first, 'label5','label6', 'label7',]) #if needed
for values in exportPixelCounts:
writer.writerow(values)
fl.close()
print("writing out new comparison pixel counts CSV file")
exportTotalPixelCounts = [];
for data in totalPixel:
innerTotalPixelCounts = [];
for j in range (0, 1):
innerTotalPixelCounts.append(ee.Number(data));
data = ee.List(innerTotalPixelCounts)
print("inner total pixel counts", data.getInfo())
exportTotalPixelCounts.append(data.getInfo());
# print("testing the print of undampen pixels wooooo", exportUndampen)
# print("one more test, seeing if it's a regular 2D array", exportUndampen[1][3])
fl = open(str(export_path +"1."+name_second + "-total-pixel-counts-" + name_first+".csv"), 'w')
writer = csv.writer(fl)
writer.writerow(['label1', 'label2',]) #if needed
for values in exportTotalPixelCounts:
writer.writerow(values)
fl.close()
print("writing out new total pixel counts CSV file")
return trutharray;
def averageTruth(first, second, base, third, forth):
doubled = [];
exportDoubles = [];
tt_type = "A"
x = base
firstimg = imagesData[first];
secimg = imagesData[second];
base = imagesData[base];
thirdimg = imagesData[third];
forthimg = imagesData[forth];
filename_done = imagesName[x] + ".done"
filename_notdone = imagesName[x] + ".notdone"
path = "truth_table_" + tt_type;
image_name = imagesName[x]
if os.path.isfile(str(path+"/"+filename_done))==False: #checking if .done file doesn't exist
print("now working on image", str(imagesURL[x]))
tt1 = afn_truthtable(7, maxPixelRequestSize, purgetarea_temp, firstimg, base, numclassbaseimg, numclasseventimg, imagesName[first], imagesName[x], minclassbaseimg);
tt2 = afn_truthtable(7, maxPixelRequestSize, purgetarea_temp, secimg, base, numclassbaseimg, numclasseventimg, imagesName[second], imagesName[x], minclassbaseimg);
tt3 = afn_truthtable(7, maxPixelRequestSize, purgetarea_temp, thirdimg, base, numclassbaseimg, numclasseventimg, imagesName[third], imagesName[x], minclassbaseimg);
tt4 = afn_truthtable(7, maxPixelRequestSize, purgetarea_temp, forthimg, base, numclassbaseimg, numclasseventimg, imagesName[forth], imagesName[x], minclassbaseimg);
for i in range (0, numclassbaseimg):
innerDouble = [];
for j in range (0, numclassbaseimg):
tmp = [];
tmp.extend([ee.Number(tt1[i].get(j)), ee.Number(tt2[i].get(j)), ee.Number(tt3[i].get(j)), ee.Number(tt4[i].get(j))])
number = ee.List(tmp)
proper = median(number.getInfo())
innerDouble.append(proper)
#innerDouble.append(ee.Number(tt1[i].get(j)).add(ee.Number(tt2[i].get(j))).add(ee.Number(tt3[i].get(j))).add(ee.Number(tt4[i].get(j))).divide(4));
data = ee.List(innerDouble)
data = ee.Array(data);
data = data.divide(data.accum(0).slice(0,numclassbaseimg-1,numclassbaseimg).repeat(0,numclassbaseimg)).toList();
print("non-transposed data", data.getInfo())
exportDoubles.append(data);
doubled.append(data.getInfo());
trans_doubled = myTranspose(doubled)
print("transposed data", trans_doubled)
new_path = image_name+"/"+"TransitionTable"+tt_type + "/"
fl = open(str(new_path+"0."+image_name+"_averages_transition_table" +".csv"), 'w')
writer = csv.writer(fl)
writer.writerow(['label1', 'label2', 'label3', 'label4', 'label5','label6', 'label7',]) #if needed
for values in trans_doubled:
writer.writerow(values)
fl.close()
print("writing out median truth table CSV file")
s = ','.join(str(item) for innerlist in trans_doubled for item in innerlist)
spl = s.split(",") # split into list of individual items
temp = "\n".join([",".join(spl[i:i+numclasseventimg]) for i in range(0,len(spl),numclasseventimg)])
individualLists = temp.split('\n')
#print("each row ",len(individualLists))
tt_numclassbase = "truthtable_" + tt_type + "_numclassbase" "=" + str(numclassbaseimg-1);
tt_numclassevent = "truthtable_" + tt_type + "_numclassevent" "=" +str(numclasseventimg-1)
subprocess.call(['earthengine', 'asset', 'set', '-p', tt_numclassbase, str(imagesURL[x]) ])
subprocess.call(['earthengine', 'asset', 'set', '-p', tt_numclassevent, str(imagesURL[x]) ])
print("property data",s)
print("gee obj",exportDoubles)
#print("testing crash", individualLists[6])
for t in range (0, numclasseventimg):
print("index counter", t)
print("each row", individualLists[t])
eeString = "truthtable_"+ tt_type +"_" +str(t)+"="+individualLists[t]
subprocess.call(['earthengine', 'asset', 'set', '-p', eeString, str(imagesURL[x]) ])
# make .done file
print("deleting .notdone file")
os.remove(str(path+"/"+filename_notdone)) # remove .notdone file
print("creating .done file")
file_done = open(str(path+"/"+filename_done), 'w');
file_done.write(names);
file_done.close()
else:
print str(path+"/"+image_name)
size = len(imagesData)
averageTruth(1, 2, 0, 3, 4)
averageTruth(0, 2, 1, 3, 4)
for x in range (2, len(imagesData)-2):
averageTruth(x-2, x-1, x, x+1, x+2)
averageTruth(size-4, size-3, size-2, size-1, size-5)
averageTruth(size-3, size-2, size-1, size-4, size-5)
print 'All done with one tile.'