-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtrain.py
184 lines (153 loc) · 6.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
"""
PyTorch Package for SoftTriple Loss
Reference
ICCV'19: "SoftTriple Loss: Deep Metric Learning Without Triplet Sampling"
Copyright@Alibaba Group
"""
import argparse
import os
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
from PIL import Image
import loss
import evaluation as eva
import net
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('data', help='path to dataset')
parser.add_argument('-j', '--workers', default=2, type=int,
help='number of data loading workers')
parser.add_argument('--epochs', default=50, type=int,
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int,
help='manual epoch number')
parser.add_argument('-b', '--batch-size', default=32, type=int,
help='mini-batch size')
parser.add_argument('--modellr', default=0.0001, type=float,
help='initial model learning rate')
parser.add_argument('--centerlr', default=0.01, type=float,
help='initial center learning rate')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
help='weight decay', dest='weight_decay')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--eps', default=0.01, type=float,
help='epsilon for Adam')
parser.add_argument('--rate', default=0.1, type=float,
help='decay rate')
parser.add_argument('--dim', default=64, type=int,
help='dimensionality of embeddings')
parser.add_argument('--freeze_BN', action='store_true',
help='freeze bn')
parser.add_argument('--la', default=20, type=float,
help='lambda')
parser.add_argument('--gamma', default=0.1, type=float,
help='gamma')
parser.add_argument('--tau', default=0.2, type=float,
help='tau')
parser.add_argument('--margin', default=0.01, type=float,
help='margin')
parser.add_argument('-C', default=98, type=int,
help='C')
parser.add_argument('-K', default=10, type=int,
help='K')
def RGB2BGR(im):
assert im.mode == 'RGB'
r, g, b = im.split()
return Image.merge('RGB', (b, g, r))
def main():
args = parser.parse_args()
# create model
model = net.bninception(args.dim)
torch.cuda.set_device(args.gpu)
model = model.cuda()
# define loss function (criterion) and optimizer
criterion = loss.SoftTriple(args.la, args.gamma, args.tau, args.margin, args.dim, args.C, args.K).cuda()
optimizer = torch.optim.Adam([{"params": model.parameters(), "lr": args.modellr},
{"params": criterion.parameters(), "lr": args.centerlr}],
eps=args.eps, weight_decay=args.weight_decay)
cudnn.benchmark = True
# load data
traindir = os.path.join(args.data, 'train')
testdir = os.path.join(args.data, 'test')
normalize = transforms.Normalize(mean=[104., 117., 128.],
std=[1., 1., 1.])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.Lambda(RGB2BGR),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Lambda(lambda x: x.mul(255)),
normalize,
]))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
test_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(testdir, transforms.Compose([
transforms.Lambda(RGB2BGR),
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Lambda(lambda x: x.mul(255)),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
for epoch in range(args.start_epoch, args.epochs):
print('Training in Epoch[{}]'.format(epoch))
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
train(train_loader, model, criterion, optimizer, args)
# evaluate on validation set
nmi, recall = validate(test_loader, model, args)
print('Recall@1, 2, 4, 8: {recall[0]:.3f}, {recall[1]:.3f}, {recall[2]:.3f}, {recall[3]:.3f}; NMI: {nmi:.3f} \n'
.format(recall=recall, nmi=nmi))
def train(train_loader, model, criterion, optimizer, args):
# switch to train mode
model.train()
if args.freeze_BN:
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
for i, (input, target) in enumerate(train_loader):
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
def validate(test_loader, model, args):
# switch to evaluation mode
model.eval()
testdata = torch.Tensor()
testlabel = torch.LongTensor()
with torch.no_grad():
for i, (input, target) in enumerate(test_loader):
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
# compute output
output = model(input)
testdata = torch.cat((testdata, output.cpu()), 0)
testlabel = torch.cat((testlabel, target))
nmi, recall = eva.evaluation(testdata.numpy(), testlabel.numpy(), [1, 2, 4, 8])
return nmi, recall
def adjust_learning_rate(optimizer, epoch, args):
# decayed lr by 10 every 20 epochs
if (epoch+1)%20 == 0:
for param_group in optimizer.param_groups:
param_group['lr'] *= args.rate
if __name__ == '__main__':
main()