-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_stability_feat_noise.py
151 lines (133 loc) · 5.78 KB
/
plot_stability_feat_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import torch
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams
rcParams['pdf.fonttype'] = 42
rcParams['ps.fonttype'] = 42
methods = ["pgexplainer", "tagexplainer_1", 'rcexplainer_1.0', 'gnnexplainer']
method_name_map = {
"pgexplainer": "PGExplainer",
"tagexplainer_1": "TAGExplainer",
'cff_1.0': r'CF$^2$',
'rcexplainer_1.0': 'RCExplainer',
'gnnexplainer': 'GNNExplainer',
'gem': 'GEM',
'subgraphx': 'SubgraphX'
}
datasets = ["Mutagenicity", "Proteins"]
markers = {
"pgexplainer": "v",
"tagexplainer_1": "<",
"cff_1.0": "s",
"rcexplainer_1.0": "P",
"gnnexplainer": "X",
"gem": "d",
"subgraphx": "h"
}
colors = {
"pgexplainer": "r",
"tagexplainer_1": "g",
"cff_1.0": "m",
"rcexplainer_1.0": "y",
"gnnexplainer": "k",
"gem": "orange",
"subgraphx": "brown"
}
folded = True
if not folded:
# read results
gnn_type = 'gcn'
dataset_results = {dataset: {} for dataset in datasets}
for dataset in datasets:
for method in methods:
path = f"data/{dataset}/{method}/stability_noise_feature_{gnn_type}_run_1.pt"
if os.path.exists(path):
faithfulness_results = torch.load(path)
dataset_results[dataset][method] = faithfulness_results['jaccard']
else:
dataset_results[dataset][method] = [None] * 5
else:
# read results with fold
gnn_type = 'gcn'
dataset_results = {dataset: {} for dataset in datasets}
for dataset in datasets:
for method in methods:
dataset_results[dataset][method] = {fold: [] for fold in range(5)}
for fold in range(5):
path = f"data/{dataset}/{method}_fold/stability_noise_feature_{gnn_type}_run_1_fold_{fold}.pt"
if os.path.exists(path):
faithfulness_results = torch.load(path)
dataset_results[dataset][method][fold] = faithfulness_results['jaccard']
else:
dataset_results[dataset][method][fold] = [None] * 5
if None not in np.array(list(dataset_results[dataset][method].values())).flatten():
dataset_results[dataset][method]['mean'] = []
dataset_results[dataset][method]['std'] = []
for i in range(len(dataset_results[dataset][method][0])):
dataset_results[dataset][method]['mean'].append(np.mean([dataset_results[dataset][method][fold][i] for fold in range(5)]))
dataset_results[dataset][method]['std'].append(np.std([dataset_results[dataset][method][fold][i] for fold in range(5)]))
else:
path = f"data/{dataset}/{method}/stability_noise_feature_{gnn_type}_run_1.pt"
if os.path.exists(path):
faithfulness_results = torch.load(path)
dataset_results[dataset][method]['mean'] = faithfulness_results['jaccard']
else:
dataset_results[dataset][method]['mean'] = [None] * 5
dataset_results[dataset][method]['std'] = [0.0] * 5
nrows = 1
ncols = len(datasets)
fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols * 4, nrows * 4), sharex=True)
labelsize = 14
ticksize = 12
markersize = 6
linewidth = 1.5
xticks = [10, 20, 30, 40, 50]
count = 0
ls = [None] * len(methods)
for col_i in range(ncols):
ax = axes[col_i]
dataset_name = datasets[count]
if not folded:
for i, method_key in enumerate(methods):
if method_key in dataset_results[dataset_name]:
ls_results, = ax.plot(xticks, dataset_results[dataset_name][method_key], label=method_key, marker=markers[method_key], color=colors[method_key])
if count == 0:
ls[i] = ls_results
else:
for i, method_key in enumerate(methods):
if method_key in dataset_results[dataset_name]:
if 'mean' in dataset_results[dataset_name][method_key] and None not in dataset_results[dataset_name][method_key]['mean']:
if None in dataset_results[dataset_name][method_key]['std']:
ax.plot(xticks, dataset_results[dataset_name][method_key]['mean'], label=method_key, marker=markers[method_key], color=colors[method_key])
else:
ax.errorbar(x=xticks, y=dataset_results[dataset_name][method_key]['mean'], yerr=dataset_results[dataset_name][method_key]['std'],
label=method_key, marker=markers[method_key], color=colors[method_key], capsize=5)
if count == 0:
handles, labels = ax.get_legend_handles_labels()
ls = [h[0] for h in handles]
ax.minorticks_off()
ax.set_xticks(xticks)
ax.set_title(dataset_name, fontsize=labelsize)
ax.set_xticklabels(xticks)
if col_i == 0:
ax.set_ylabel('Jaccard Similarity', fontsize=labelsize)
ax.tick_params(axis='x', labelsize=ticksize)
ax.tick_params(axis='y', labelsize=ticksize)
ax.set_xlim(5, 55)
ax.grid(True)
count += 1
# Add common x axis.
fig.add_subplot(111, frameon=False)
plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)
plt.xlabel('Perturbation (%)', fontsize=labelsize)
fig.tight_layout()
fig.subplots_adjust(left=0.035, bottom=0.16, right=0.99, wspace=0.22)
method_names = [method_name_map[method] for method in methods]
axes[1].legend(handles=ls, labels=method_names,
loc='upper center', bbox_to_anchor=(-0.2, -0.2), fancybox=False, shadow=False, ncol=len(methods), fontsize=labelsize)
if not folded:
fig.savefig(f'plots/stability_noise_feature_{gnn_type}.pdf', bbox_inches='tight')
else:
fig.savefig(f'plots/stability_noise_feature_{gnn_type}_fold.pdf', bbox_inches='tight')
plt.show(tight_layout=True)