forked from frigategnn/Frigate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
84 lines (79 loc) · 3.47 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
import argparse
from io import StringIO
from pathlib import Path
from pprint import pprint
from utils.test_data_utils import get_dataloader_and_adj_mx
from model.tester import model_test
def main():
# ---------------------------------------------------
parser = argparse.ArgumentParser(description='Test the model')
parser.add_argument('--traffic_path', type=str, required=True,
help='path to traffic data (pkl gz format)')
parser.add_argument('--lipschitz_path', type=str, required=True,
help='path to lipschitz data (npz)')
parser.add_argument('--adj_path', type=str, required=True,
help='path to adjacency data (pickle)')
parser.add_argument('--seen_path', type=str, required=True,
help='path to seen nodes index (npy)')
parser.add_argument('--keep_tod', default=False, action='store_true',
help='whether to keep time of day (boolean flag)')
parser.add_argument('--future', type=int, default=12,
help='how far in the future to predict')
parser.add_argument('--past', type=int, default=12,
help='how far in the past to look')
parser.add_argument('--nlayers', type=int, default=10,
help='number of layers used in the GNN')
parser.add_argument('--gnn_input_dim', type=int, required=True,
help='number of input dimensions taken by gnn')
parser.add_argument('--gnn_hidden_dim', type=int, required=True,
help='number of hidden dimensions of gnn')
parser.add_argument('--enc_input_dim', type=int, required=True,
help='number of input dimensions taken by lstm\'s encoder')
parser.add_argument('--enc_hidden_dim', type=int, required=True,
help='number of hidden dimensions of lstm encoder')
parser.add_argument('--dec_hidden_dim', type=int, required=True,
help='number of hidden dimensions of lstm decoder')
parser.add_argument('--output_dim', type=int, required=True,
help='number of output dimensions')
parser.add_argument('--model_name', type=str, required=True,
help='trained model\'s name that corresponds to given hyperparams')
parser.add_argument('--run_num', type=int, required=True,
help='used to find path to model, the run num of training')
parser.print_usage = parser.print_help
pargs = parser.parse_args()
# ---------------------------------------------------
model_args = {
'gnn_input_dim':pargs.gnn_input_dim,
'gnn_hidden_dim':pargs.gnn_hidden_dim,
'enc_input_dim':pargs.enc_input_dim,
'enc_hidden_dim':pargs.enc_hidden_dim,
'dec_hidden_dim':pargs.dec_hidden_dim,
'output_dim':pargs.output_dim,
'nlayers':pargs.nlayers,
}
device = torch.device("cuda:0" if torch.cuda.is_available() else 'cpu')
dataloaders, edge_weight, n_nodes = get_dataloader_and_adj_mx(
pargs.traffic_path,
pargs.lipschitz_path,
pargs.adj_path,
pargs.seen_path,
keep_tod=pargs.keep_tod,
f=pargs.future,
p=pargs.past,
nlayers=pargs.nlayers,
)
with StringIO() as s:
pprint(vars(pargs), stream=s, indent=4)
print(s.getvalue())
edge_weight = edge_weight.to(device).to(torch.float32)
model_test(model_args,
device,
dataloaders,
edge_weight,
pargs.run_num,
pargs.model_name,
n_nodes
)
if __name__=="__main__":
main()