-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdali_demo.py
445 lines (360 loc) · 20.7 KB
/
dali_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
"""
Copyright (c) 2024 Ian Cavén
MIT License
Program to demonstrate the use of the Nvidia DALI package, by transforming video frames from one
colour space to another using Nvidia CUDA operations.
Reference: https://docs.nvidia.com/deeplearning/dali/user-guide/docs/index.html
Test videos may be downloaded from https://github.com/NVIDIA/DALI_extra.git
Can specify the location of the DALI_extra directory using the DALI_EXTRA_PATH environment variable (defaults to ~/Videos).
If the default test video is not found, then a file dialog will be opened to select a video.
"""
import os
import pathlib
import time
from enum import IntEnum, auto
from typing import Union, List, cast
import numpy as np
import nvidia.dali as nd
from nvidia.dali import pipeline_def
import nvidia.dali.fn as fn
import cupy as cp
import dearpygui.dearpygui as dpg
max_batch_size = 1
frame_rate = 60
max_memory_to_use = 2 ** 30
sequence_length = 100 # Will be reduced if the frames are large
maximum_sequence_length = 100
if "DALI_EXTRA_PATH" not in os.environ:
os.environ["DALI_EXTRA_PATH"] = str(pathlib.Path("~").expanduser() / "Videos" / "DALI_extra")
# Attempt the use a default video; a file selection dialog will be presented if the video isn't found
video_directory = pathlib.Path(os.environ["DALI_EXTRA_PATH"]) / "db" / "video"
test_video = str(video_directory / "sintel" / "video_files" / "sintel_trailer-720p_2.mp4")
# test_video = "" # Use this to force the file dialog to open during testing
def bt709_to_bt2020_pipeline(input_source_name: str) -> nd.Pipeline:
"""
Instantiate a pipeline to convert images in the BT.709 colour space to the BT.2020 colour space.
:param input_source_name: The name of the input source DataNode key in the run().
:return: The pipeline.
"""
python_function_pipe = nd.Pipeline(
batch_size=1,
num_threads=1,
device_id=0,
exec_async=False,
exec_pipelined=False,
seed=42,
)
# Values from https://en.wikipedia.org/wiki/Rec._709
bt709_oetf_to_bt709_linear_kernel_code = """
// Convert to linear using the BT.709 inverse OETF
output = input < 0.18f ? input / 4.5f : powf((input + 0.099f)/1.099f, 1.0f/0.45f);
"""
bt709_oetf_to_bt709_linear = cp.ElementwiseKernel(
"float32 input",
"float32 output",
bt709_oetf_to_bt709_linear_kernel_code,
name="bt709_oetf_to_bt709_linear"
)
# Values from https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.2020-2-201510-I!!PDF-E.pdf
bt2020_linear_to_bt2020_oetf_kernel_code = """
// Apply non-linear OETF curve using the BT.2020 OETF
const float b = 0.0181f;
const float a = 1.0993f; // == 1 + 5.5 * b
output = input < b ? (input >= 0 ? 4.5f * input : input) :
input <= 1.0f ? a * powf(input, 0.45f) - (a - 1.f) : 1.0f;
"""
bt2020_linear_to_bt2020_oetf = cp.ElementwiseKernel(
"float32 input",
"float32 output",
bt2020_linear_to_bt2020_oetf_kernel_code,
name="bt2020_linear_to_bt2020_oetf"
)
def bt709_linear_to_bt2020_linear(image: cp.array, matrix_m2_t: cp.array) -> cp.array:
s = image.shape
assert s[-1] == 3
return (image.reshape((-1, 3)) @ matrix_m2_t).reshape(s)
# Matrix M2 from https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.2087-0-201510-I!!PDF-E.pdf
# Rec. ITU-R BT.2087-0 Annex 1
# Use the transpose of the conversion matrix so that the multiply can be (image @ bt709_to_bt2020_conversion.T).T
bt709_to_bt2020_conversion = np.array([[0.6274, 0.3293, 0.0433],
[0.0691, 0.9195, 0.0114],
[0.0164, 0.0880, 0.8956]]).astype(np.float32).T
bt709_to_bt2020_conversion_datanode = nd.types.Constant(bt709_to_bt2020_conversion, device="gpu")
with python_function_pipe:
source_image = fn.external_source(name=input_source_name, device='gpu')
linear_bt_709 = fn.python_function(source_image, device="gpu", function=bt709_oetf_to_bt709_linear)
linear_bt_2020 = fn.python_function(linear_bt_709, bt709_to_bt2020_conversion_datanode,
device="gpu", function=bt709_linear_to_bt2020_linear)
oetf_bt_2020 = fn.python_function(linear_bt_2020, device="gpu", function=bt2020_linear_to_bt2020_oetf)
python_function_pipe.set_outputs(oetf_bt_2020)
return python_function_pipe
@pipeline_def(device_id=0, exec_pipelined=False, prefetch_queue_depth=1, exec_async=False, num_threads=1, batch_size=1)
def hue_adjustment_pipeline(input_source_name: str, hue_adjustment_value_name: str) -> nd.data_node.DataNode:
"""
Create a pipeline using the pipeline_def decorator to shift the hue of an image.
:param input_source_name: The name of the DataNode key for the source image.
:param hue_adjustment_value_name: The name of the DataNode key for the hue adjustment value.
:return: The output data node for the pipeline constructed by the pipeline_def decorator.
"""
source_image = fn.external_source(name=input_source_name, device='gpu')
hue_adjustment_value = fn.external_source(name=hue_adjustment_value_name, device='cpu')
image_with_shifted_hue = fn.hue(source_image, hue=hue_adjustment_value, device='gpu')
return image_with_shifted_hue
@pipeline_def(batch_size=max_batch_size, num_threads=2, device_id=0)
def video_input_pipeline(filenames: Union[str, List[str]]):
""" Create a pipeline which reads video files, decodes them and returns images.
"""
global sequence_length
pixel_data_type = "float32"
@pipeline_def(batch_size=1, num_threads=1, device_id=0)
def create_preflight_pipeline() -> nd.data_node.DataNode:
"""
Create a preflight pipeline to measure the amount of memory used by each frame
:return: The new pipeline
"""
preflight_video = fn.readers.video(filenames=filenames, device='gpu', seed=1, sequence_length=1,
dtype=nd.types.to_dali_type(pixel_data_type),
file_list_include_preceding_frame=False,
)
return preflight_video
preflight_pipe = cast(nd.Pipeline, create_preflight_pipeline())
preflight_pipe.build()
all_frames = preflight_pipe.run()
all_frames = all_frames[0].as_cpu().as_array()
frame_size = np.prod(all_frames.shape[2:]) * np.dtype(pixel_data_type).itemsize
max_frames = int(np.floor(max_memory_to_use / frame_size))
# print(f"Max frames: {max_frames}, frame_size = {frame_size}")
# Now that the maximum number of frames is known, create a reader for the in-memory sequence
sequence_length = min(max_frames, max(maximum_sequence_length, sequence_length))
video = fn.readers.video(filenames=filenames, device='gpu', seed=1, sequence_length=sequence_length,
dtype=nd.types.to_dali_type(pixel_data_type), file_list_include_preceding_frame=False)
# Scale the values of the video into the 0..1 range, which what the dpg raw texture expects
video = video * nd.types.Constant(np.float32(1. / 255.))
return video
# Radio button choices
class ConversionChoices(IntEnum):
no_conversion = 0
colour_conversion = auto()
hue_conversion = auto()
class ColourTransformer(object):
"""
This class provides the user interface to the colour transformation.
"""
def __init__(self):
self.image_sequence_loaded: bool = False
self.all_frames: Union[None, np.array] = None # The current sequence of frames
self.raw_image_data: Union[None, np.array] = None # The raw float32 data for the current frame
self.current_frame_number = -1 # The current frame number in the sequence
self.direction: int = 1 # The playback direction (1 = forward, -1 = backward)
self.batch_size: int = 1 # Used when training in batches
self.number_of_frames = 0 # The number of frames in the sequence
self.playing = False
self.filename = ""
self.play_button = None
self.frame_number_slider = None
self.texture_registry = None
self._hue_shift = 0.
# Identifiers for the GUI controls
self.image_window_tag = dpg.generate_uuid()
self.control_window_tag = dpg.generate_uuid()
self.initial_file_selection_window_tag = dpg.generate_uuid()
self.texture_tag = dpg.generate_uuid()
self.texture_registry_tag = dpg.generate_uuid()
self.image_tag = dpg.generate_uuid()
self.filename_tag = dpg.generate_uuid()
self.hue_adjustment_tag = dpg.generate_uuid()
self.hue_adjustment_value_tag = dpg.generate_uuid()
self.no_conversion_radio_tag = dpg.generate_uuid()
self.bt709_bt2020_radio_tag = dpg.generate_uuid()
self.hue_adjustment_radio_tag = dpg.generate_uuid()
# Pre-built pipelines
self.conversion_pipe_used: ConversionChoices = ConversionChoices.no_conversion
self.cached_bt709_to_bt2020_pipeline: nd.Pipeline = bt709_to_bt2020_pipeline("current_input_frame")
self.cached_bt709_to_bt2020_pipeline.build()
self.cached_hue_adjustment_pipeline: nd.Pipeline = \
cast(nd.Pipeline, hue_adjustment_pipeline("current_input_frame", "hue_adjustment_value"))
self.cached_hue_adjustment_pipeline.build()
@property
def hue_shift(self):
return self._hue_shift
def set_hue_shift(self, sender):
value = dpg.get_value(sender)
self._hue_shift = np.round(value)
def create_texture_for_video(self, full_path_to_video: str):
"""
Create a texture for the video referenced by the filename.
:param full_path_to_video: The full path to the video file
:return: None
"""
self.image_sequence_loaded = False
self.filename = pathlib.Path(full_path_to_video).name
# Set up the input pipeline for decoding the video and run it to load the frames into memory
pipe = video_input_pipeline(full_path_to_video)
pipe.build()
outputs = pipe.run()
# The frames from the first batch of the first output
self.all_frames = outputs[0].as_cpu().as_array()
self.batch_size, self.number_of_frames, h, w, c = self.all_frames.shape
# Initialize the image from the first frame
self.raw_image_data = self.all_frames[0, 0]
image_format = dpg.mvFormat_Float_rgba if c == 4 else dpg.mvFormat_Float_rgb
with dpg.texture_registry(tag=self.texture_registry_tag, show=False):
try:
dpg.configure_item(self.texture_tag, width=w, height=h, default_value=self.raw_image_data,
format=image_format)
except SystemError:
dpg.add_raw_texture(width=w, height=h, default_value=self.raw_image_data,
format=image_format, tag=self.texture_tag)
# Reset the frame number to the beginning and playback in the forward direction
self.current_frame_number = 0
self.direction = 1
# Update the frame number slider
if self.frame_number_slider is not None:
dpg.configure_item(self.frame_number_slider, max_value=self.number_of_frames - 1)
dpg.set_value(self.frame_number_slider, self.current_frame_number)
def set_playing(self, value):
"""
Callback handler for recording the state of playing and the toggling the button text.
:param value:
:return:
"""
self.playing = value
if self.play_button:
if self.playing:
dpg.configure_item(self.play_button, label="Pause")
else:
dpg.configure_item(self.play_button, label="Play")
def show_windows(self):
"""
Construct the main window and the control windows.
:return:
"""
def file_selected_callback(sender, app_data):
if sender in ['file_dialog_id', 'initial', 'file_dialog_id_initial']:
if pathlib.Path(app_data['file_name']).suffix in ['.mov', '.mp4']:
self.image_sequence_loaded = False
try:
dpg.delete_item(self.image_tag)
self.image_tag = dpg.generate_uuid()
dpg.delete_item(self.image_window_tag)
self.image_window_tag = dpg.generate_uuid()
# Create a new texture tag, since the old one can't be deleted (perhaps a bug in dpg?)
self.texture_tag = dpg.generate_uuid()
except SystemError:
pass
self.create_texture_for_video(app_data['file_path_name'])
window_bar_height = 20
with dpg.window(width=self.raw_image_data.shape[1],
height=self.raw_image_data.shape[0]+window_bar_height,
no_close=True, no_bring_to_front_on_focus=True,
tag=self.image_window_tag, no_move=True, pos=(0, window_bar_height),
no_title_bar=True):
dpg.add_image(label="Image", texture_tag=self.texture_tag, tag=self.image_tag)
try:
# Update the filename in the controls window
dpg.set_value(self.filename_tag, f"{app_data['file_name']}")
except SystemError:
pass # Label hasn't been added yet
self.image_sequence_loaded = True
self.set_playing(True)
def cancel_file_selection_callback(sender, app_data):
if sender == 'file_dialog_id_initial':
dpg.stop_dearpygui()
# Add file selection dialogs to select either a directory or a file (or file sequence)
def create_file_dialog(tag):
with dpg.file_dialog(directory_selector=False, file_count=10, show=False, callback=file_selected_callback,
tag=tag, cancel_callback=cancel_file_selection_callback,
width=700, height=400):
dpg.add_file_extension("Video files (*.mov *.mp4){.mov,.mp4}", color=(0, 255, 255, 255))
# dpg.add_file_extension("Image files (*.tif[f] *.jpg *.png){.tif,.tiff,.jpg,.png}",
# color=(0, 255, 255, 255))
create_file_dialog("file_dialog_id")
with dpg.theme() as global_theme:
with dpg.theme_component(dpg.mvAll, enabled_state=True):
dpg.add_theme_color(dpg.mvThemeCol_Button, value=(23, 140, 255), category=dpg.mvThemeCat_Core)
dpg.add_theme_color(dpg.mvThemeCol_Text, [255, 255, 255])
dpg.add_theme_style(dpg.mvStyleVar_FrameRounding, 5, category=dpg.mvThemeCat_Core)
dpg.bind_theme(global_theme)
# Start with the initial video, if it exists
if pathlib.Path(test_video).exists():
file_selected_callback("initial",
{'file_path_name': test_video, 'file_name': pathlib.Path(test_video).name})
with dpg.viewport_menu_bar():
with dpg.menu(label="File"):
dpg.add_menu_item(label="Open...", tag="file_selection_menu_item", callback=lambda: dpg.show_item("file_dialog_id"))
dpg.add_menu_item(label="Quit", tag="quit_menu_item", callback=dpg.stop_dearpygui)
if self.raw_image_data is not None:
self.image_sequence_loaded = True
else:
# No default video, so present a dialog to select it
create_file_dialog("file_dialog_id_initial")
dpg.show_item("file_dialog_id_initial")
with dpg.window(tag=self.control_window_tag, no_close=True, width=300):
dpg.add_text(f"{self.filename}", tag=self.filename_tag)
with dpg.group(horizontal=True, horizontal_spacing=5):
self.play_button = dpg.add_button(label="Play", callback=lambda: self.set_playing(not self.playing))
dpg.add_text("Frame: ")
max_frame_number = self.all_frames.shape[1] - 1 if self.image_sequence_loaded else 0
self.frame_number_slider = dpg.add_slider_int(tag="frame_number",
max_value=max_frame_number,
min_value=0, callback=self.set_frame_number)
dpg.add_radio_button(("No conversion", "BT.709 -> BT.2020", "Hue shift"),
callback=self.conversion_parameters_changed, horizontal=False)
with dpg.group(horizontal=True, horizontal_spacing=5):
dpg.add_slider_float(tag=self.hue_adjustment_tag, min_value=-180, max_value=179,
default_value=0, format="%3.0f", clamped=True, callback=self.set_hue_shift)
self.set_playing(self.image_sequence_loaded)
def set_frame_number(self, sender):
frame_number = dpg.get_value(sender)
self.current_frame_number = frame_number
def conversion_parameters_changed(self, sender, app_data):
if app_data == 'BT.709 -> BT.2020':
self.conversion_pipe_used = ConversionChoices.colour_conversion
elif app_data == "Hue shift":
self.conversion_pipe_used = ConversionChoices.hue_conversion
elif app_data == "No conversion":
self.conversion_pipe_used = ConversionChoices.no_conversion
def update_image(self):
"""
Updates the current frame displayed, and possibly performs a colour conversion operation on the image.
:return:
"""
if self.image_sequence_loaded:
if self.playing:
# Playback the sequence with a bounce at the start and end
if (self.direction < 0 and self.current_frame_number == 0) or \
(self.direction > 0 and self.current_frame_number == self.number_of_frames - 1):
self.direction *= -1
self.current_frame_number = (self.current_frame_number + self.direction) % self.number_of_frames
# Update the frame number slider
dpg.set_value(self.frame_number_slider, self.current_frame_number)
current_input_frame = self.all_frames[0, self.current_frame_number, :]
if self.conversion_pipe_used == ConversionChoices.no_conversion:
current_frame = current_input_frame
else:
image_on_gpu_as_single_frame_batch = cp.array(current_input_frame[np.newaxis, np.newaxis, :])
if self.conversion_pipe_used == ConversionChoices.hue_conversion:
# Get the hue shift and feed it into the pipeline
hue_adjustment_value = cp.array((self.hue_shift,), dtype=cp.float32)
self.cached_hue_adjustment_pipeline.feed_input(data_node="hue_adjustment_value", data=hue_adjustment_value)
output_image = self.cached_hue_adjustment_pipeline.run(current_input_frame=image_on_gpu_as_single_frame_batch)
else: # self.conversion_pipe_used == ConversionChoices.colour_conversion:
output_image = self.cached_bt709_to_bt2020_pipeline.run(current_input_frame=image_on_gpu_as_single_frame_batch)
current_frame = output_image[0].as_cpu().as_array().squeeze()
self.raw_image_data[:] = current_frame
def main():
dpg.create_context()
# dpg.show_item_registry() # For debugging
# Create the viewport which contains the application's windows
dpg.create_viewport(title='Transformation', width=1920, height=1080)
dpg.setup_dearpygui()
dpg.show_viewport()
ct = ColourTransformer()
ct.show_windows()
while dpg.is_dearpygui_running():
ct.update_image()
dpg.render_dearpygui_frame()
time.sleep(1./frame_rate)
dpg.destroy_context()
if __name__ == "__main__":
main()