-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
212 lines (147 loc) · 8.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import numpy as np
# A dictionary of parameter lists for conversion.
registered_params = {"SB1": ["K", "e", "omega", "P", "T0", "gamma", "amp_f", "l_f"],
"SB2": ["q", "K", "e", "omega", "P", "T0", "gamma", "amp_f", "l_f", "amp_g", "l_g"],
"ST1": ["K_in", "e_in", "omega_in", "P_in", "T0_in", "K_out", "e_out", "omega_out", "P_out", "T0_out", "gamma", "amp_f", "l_f"],
"ST2": ["q_in", "K_in", "e_in", "omega_in", "P_in", "T0_in", "K_out", "e_out", "omega_out", "P_out", "T0_out", "gamma", "amp_f", "l_f"],
"ST3": ["q_in", "K_in", "e_in", "omega_in", "P_in", "T0_in", "q_out", "K_out", "e_out", "omega_out", "P_out", "T0_out", "gamma", "amp_f", "l_f", "amp_g", "l_g", "amp_h", "l_h"]}
registered_models = registered_params.keys()
# Calculate how many orbital parameters there are to each model.
# For now, we'll just calculate this based upon the position of the "gamma" parameter
n_params_orb = {model: (registered_params[model].index("gamma") + 1) for model in registered_params.keys()}
# labels used for plotting
registered_labels = {"SB1": [r"$K$", r"$e$", r"$\omega$", r"$P$", r"$T_0$", r"$\gamma$", r"$a_f$", r"$l_f$"],
"SB2": [r"$q$", r"$K$", r"$e$", r"$\omega$", r"$P$", r"$T_0$", r"$\gamma$", r"$a_f$", r"$l_f$", r"$a_g$", r"$l_g$"],
"ST3": [r"$q_\mathrm{in}$", r"$K_\mathrm{in}$", r"$e_\mathrm{in}$", r"$\omega_\mathrm{in}$", r"$P_\mathrm{in}$", r"$T_{0,\mathrm{in}}$", r"$q_\mathrm{out}$", r"$K_\mathrm{out}$", r"$e_\mathrm{out}$", r"$\omega_\mathrm{out}$", r"$P_\mathrm{out}$", r"$T_{0,\mathrm{out}}$", r"$\gamma$", r"$a_f$", r"$l_f$", r"$a_g$", r"$l_g$", r"$a_h$", r"$l_h$"]}
# For example, if the config.yaml file specifies model as "SB1", then it must list all of these parameters under "SB1".
# It must also specify fix_params, which will always include gamma.
# Then, within the sampling routines, we will create a partial function that takes in model type, list of fixed parameters, and dictionary of default parameter values and upon invocation will convert a vector of only a subset of values into a full vector.
def convert_vector(p, model, fix_params, **kwargs):
'''Unroll a vector of parameter values into a parameter type, using knowledge about which model we are fitting, the parameters we are fixing, and the default values of those parameters.
Args:
p (np.float) : 1D input array of only a subset of parameter values.
model (str): "SB1", "SB2", etc..
fix_params (list of str): names of parameters that will be fixed
**kwargs: input for ``{param_name: default_value}`` pairs
Returns:
(np.float, np.float) : a 2-tuple of the full vectors for the orbital parameters, and the GP parameters, augmented with the previously missing values.
'''
# Select the registered parameters corresponding to this model
reg_params = registered_params[model]
nparams = len(reg_params)
# fit parameters are the ones in reg_params that are *not* in fix_params
fit_params = [param for param in reg_params if param not in fix_params]
fit_ind = [i for (i,param) in enumerate(reg_params) if param not in fix_params]
# go through each element in fix_params, and find out where it would fit in reg_params
fix_ind = [reg_params.index(param) for param in fix_params]
# make an empty parameter vector of total parameter length
par_vec = np.empty(nparams, dtype=np.float64)
# Stuff it with all the values that we are fitting
par_vec[fit_ind] = p
# Fill in the holes with parameters that we are fixing
# First, convert all fixed parameters to a similar type vector
p_fixed = np.array([kwargs[par_name] for par_name in fix_params])
par_vec[fix_ind] = p_fixed
# Now split it to the orbital parameters and the GP parameters
ind_split = n_params_orb[model]
par_orb = par_vec[:ind_split]
par_GP = par_vec[ind_split:]
return (par_orb, par_GP)
# function convert_dict(p::Dict, model::AbstractString)
def convert_dict(model, fix_params, **kwargs):
'''Used to turn a dictionary of parameter values (from config.yaml) directly into a parameter type. Generally used for synthesis and plotting command line scripts.'''
# Select the registered parameters corresponding to this model
reg_params = registered_params[model]
nparams = len(reg_params) - len(fix_params)
par_vec = np.empty(nparams, dtype=np.float64)
fit_params = [param for param in reg_params if param not in fix_params]
p_fit = np.array([kwargs[par_name] for par_name in fit_params])
return p_fit
def get_labels(model, fix_params):
'''
Collect the labels for each model, so that we can plot.
'''
reg_params = registered_params[model]
reg_labels = registered_labels[model]
fit_index = [i for (i,param) in enumerate(reg_params) if param not in fix_params]
labels = [reg_labels[i] for i in fit_index]
return labels
def gelman_rubin(samplelist):
'''
Given a list of flatchains from separate runs (that already have burn in cut
and have been trimmed, if desired), compute the Gelman-Rubin statistics in
Bayesian Data Analysis 3, pg 284. If you want to compute this for fewer
parameters, then slice the list before feeding it in.
'''
full_iterations = len(samplelist[0])
assert full_iterations % 2 == 0, "Number of iterations must be even. Try cutting off a different number of burn in samples."
shape = samplelist[0].shape
#make sure all the chains have the same number of iterations
for flatchain in samplelist:
assert len(flatchain) == full_iterations, "Not all chains have the same number of iterations!"
assert flatchain.shape == shape, "Not all flatchains have the same shape!"
#make sure all chains have the same number of parameters.
#Following Gelman,
# n = length of split chains
# i = index of iteration in chain
# m = number of split chains
# j = index of which chain
n = full_iterations//2
m = 2 * len(samplelist)
nparams = samplelist[0].shape[-1] #the trailing dimension of a flatchain
#Block the chains up into a 3D array
chains = np.empty((n, m, nparams))
for k, flatchain in enumerate(samplelist):
chains[:,2*k,:] = flatchain[:n] #first half of chain
chains[:,2*k + 1,:] = flatchain[n:] #second half of chain
#Now compute statistics
#average value of each chain
avg_phi_j = np.mean(chains, axis=0, dtype="f8") #average over iterations, now a (m, nparams) array
#average value of all chains
avg_phi = np.mean(chains, axis=(0,1), dtype="f8") #average over iterations and chains, now a (nparams,) array
B = n/(m - 1.0) * np.sum((avg_phi_j - avg_phi)**2, axis=0, dtype="f8") #now a (nparams,) array
s2j = 1./(n - 1.) * np.sum((chains - avg_phi_j)**2, axis=0, dtype="f8") #now a (m, nparams) array
W = 1./m * np.sum(s2j, axis=0, dtype="f8") #now a (nparams,) arary
var_hat = (n - 1.)/n * W + B/n #still a (nparams,) array
std_hat = np.sqrt(var_hat)
R_hat = np.sqrt(var_hat/W) #still a (nparams,) array
data = Table({ "Value": avg_phi,
"Uncertainty": std_hat},
names=["Value", "Uncertainty"])
print(data)
ascii.write(data, sys.stdout, Writer = ascii.Latex, formats={"Value":"%0.3f", "Uncertainty":"%0.3f"}) #
#print("Average parameter value: {}".format(avg_phi))
#print("std_hat: {}".format(np.sqrt(var_hat)))
print("R_hat: {}".format(R_hat))
if np.any(R_hat >= 1.1):
print("You might consider running the chain for longer. Not all R_hats are less than 1.1.")
def estimate_covariance(flatchain, ndim=0):
if ndim == 0:
d = flatchain.shape[1]
else:
d = ndim
import matplotlib.pyplot as plt
#print("Parameters {}".format(flatchain.param_tuple))
#samples = flatchain.samples
cov = np.cov(flatchain, rowvar=0)
#Now try correlation coefficient
cor = np.corrcoef(flatchain, rowvar=0)
# Make a plot of correlation coefficient.
fig, ax = plt.subplots(figsize=(0.5 * d, 0.5 * d), nrows=1, ncols=1)
ext = (0.5, d + 0.5, 0.5, d + 0.5)
ax.imshow(cor, origin="upper", vmin=-1, vmax=1, cmap="bwr", interpolation="none", extent=ext)
fig.savefig("cor_coefficient.png")
print("'Optimal' jumps with covariance (units squared)")
opt_jump = 2.38**2/d * cov
# opt_jump = 1.7**2/d * cov # gives about ??
std_dev = np.sqrt(np.diag(cov))
print("'Optimal' jumps")
print(2.38/np.sqrt(d) * std_dev)
return opt_jump
def main():
# "K", "e", "omega", "P", "T0", "gamma", "amp_f", "l_g"
p = np.array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6])
p_return = convert_vector(p, "SB1", ["gamma", "e"], gamma=1.0, e=-0.4)
print(p_return)
if __name__=="__main__":
main()